À propos de cet article

Citez

1. Abbasi, M., Bari, M. R., Aramideh, S. & Mousavi, N. V. (2014). Assessment of the effect of biosurfactant produced by Pseudomonas aeruginosa in lethality of Bacillus thuringiensis Berl. against 3rd instars larvae of white cabbage butterfly (Pieris brassicae L.). Archives of Phytopathology and Plant Protection, 47(17), 2106-2111. DOI: 10.1080/03235408.2013.869889.10.1080/03235408.2013.869889Search in Google Scholar

2. Adekilekun, J. A. & Johnson, L. (2019). Biosurfactant: A new frontier for greener technology and environmental sustainability. Ecotoxicology and Environmental Safety, 184, 109-607. DOI: 10.1016/j.ecoenv.2019.109607.10.1016/j.ecoenv.2019.109607Search in Google Scholar

3. Arima, K., Kakinuma, A. & Tamura, G. (1968). Surfactin, a crystalline peptidelipid surfactant produced by Bacillus subtilis: Isolation, characterization and its inhibition of fibrin clot formation. Biochem Biophys Res Commun, 31, 488-494.10.1016/0006-291X(68)90503-2Search in Google Scholar

4. Araújo, S.C.d.S., Silva-Portela, R.C.B. & de Lima, D.C. (2020). MBSP1: a biosurfactant protein derived from a metagenomic library with activity in oil degradation. Scientific reports, 10(1), 1340. DOI: 10.1038/s41598-020-58330-x.10.1038/s41598-020-58330-xSearch in Google Scholar

5. Baha, I. E. & Zhang, Y. J. (2019). Surface modification of ammonium nitrate by coating with surfactant materials to reduce hygroscopicity. Defence Technology, 15(4), 615-620. DOI: 10.1016/j.dt.2019.01.004.10.1016/j.dt.2019.01.004Search in Google Scholar

6. Banat, I. M., Makkar, R. S. & Cameotra, S. S. (2000). Potential commercial applications of microbial surfactants. Applied Microbiology & Biotechnology, 53(5), 495-508.10.1007/s002530051648Search in Google Scholar

7. Baumgart, F., Kluge, B. & Ullrich, C. (1991). Identification of amino acid substitutions in the lipopeptide surfactin using 2D NMR spectroscopy. Biochemical and biophysical research communications,177(3), 998-1005.10.1016/0006-291X(91)90637-MSearch in Google Scholar

8. Befkadu, A. A. & Chen, Q. Y. (2018). Surfactant-Enhanced Soil Washing for Removal of Petroleum Hydrocarbons from Contaminated Soils: A Review. Pedosphere, 28(03), 23-50.10.1016/S1002-0160(18)60027-XSearch in Google Scholar

9. Behzadnia, A., Moosavi-Nasab, M. & Tiwari, B. K. (2019). Stimulation of biosurfactant production by Lactobacillus plantarum using ultrasound. Ultrasonics sonochemistry, 59,104-724. DOI: 10.1016/j.ultsonch.2019.104724.10.1016/j.ultsonch.2019.10472431421618Search in Google Scholar

10. Bezza, F. A. & Chirwa, E. M. N. (2015). Production and applications of lipopeptide biosurfactant for bioremediation and oil recovery by Bacillus subtilis CN2. Biochemical Engineering Journal, 101, 168-178. DOI: 10.1016/j.bej.2015.05.007.10.1016/j.bej.2015.05.007Search in Google Scholar

11. Catherine, N. & Mulligan. (2004). Environmental applications for biosurfactants. Environmental Pollution, 133(2), 183-198. DOI: 10.1016/j.envpol.2004.06.009.10.1016/j.envpol.2004.06.009Search in Google Scholar

12. Cheng, F. F., Chen, H. & Lei, N. (2019). Effects of Carbon and Nitrogen Sources on Activity of Cell Envelope Proteinase Produced by Lactobacillus plantarum LP69. Acta Universitatis Cibiniensis. Series E: Food Technology, 23(1), 11-18. DOI: 10.2478/aucft-2019-0002.10.2478/aucft-2019-0002Search in Google Scholar

13. Dams-Kozlowska H. & Kaplan D.L. (2007). Protein engineering of wzc to generate new emulsan analogs. Applied and environmental microbiology, 73(12), 4020-4028.10.1128/AEM.00401-07Search in Google Scholar

14. Dong, Y. J., Shu, G. W. & Dai, C. j. (2019). Screening and Identification of Biosurfactant-Producing Lactic Acid Bacteria. Acta Universitatis Cibiniensis. Series E: Food Technology, 23(2), 85-92. DOI: 10.2478/aucft-2019-0011.10.2478/aucft-2019-0011Search in Google Scholar

15. Falcao, S., Marques, E.F. & Soderman, O. (2006). Self-assembly in a catanionic mixture with an aminoacid-derived surfactant: From mixed micelles to spontaneous vesicles. The Journal of Physical Chemistry B, 110(37), 18158-18165.10.1021/jp061946jSearch in Google Scholar

16. Fisseha, A. B., Mervyn, B. & Evans, M. (2015). Application of biosurfactant produced by Ochrobactrum intermedium CN3 for enhancing petroleum sludge bioremediation. Process Biochemistry, 50(11), 1911-1922. DOI: 10.1016/j.procbio.2015.07.002.10.1016/j.procbio.2015.07.002Search in Google Scholar

17. Franzetti, A., Martinotti, M. G. & Smyth, T. J. (2010). Microbial biosurfactants production, applications and future potential. Applied microbiology and biotechnology, 87, 427–444. DOI: 10.1007/s00253-010-2589-0.10.1007/s00253-010-2589-0Search in Google Scholar

18. Fujii, M., Inoue, M. & Fukami, T. (2017). Novel amino acid-based surfactant for silicone emulsification and its application in hair care products: A promising alternative to quaternary ammonium cationic surfactants. International journal of cosmetic science, 39(5), 556-563. DOI: 10.1111/ics.12414.10.1111/ics.12414Search in Google Scholar

19. Galli, G., Rodriguez, F. & Cosmina, P. (1994). Characterization of the surfactin synthetase multienzyme complex. Biochimica et biophysica acta, 1205(1), 19-28.10.1016/0167-4838(94)90087-6Search in Google Scholar

20. Hajfarajollah, H., Eslami, P. & Mokhtarani, B. (2018). Biosurfactants from probiotic bacteria: A review. Biotechnology and Applied Biochemistry, 65(6). DOI: 10.1002/bab.1686.10.1002/bab.168630120889Search in Google Scholar

21. Karapetsas, G., Craster, R. V. & Matar, O. K. (2011). On surfactant-enhanced spreading and superspreading of liquid drops on solid surfaces. Journal of Fluid Mechanics, 670, 5-37. DOI: 10.1017/S0022112010005495.10.1017/S0022112010005495Search in Google Scholar

22. Liu, Z. F., Zeng, G. M. & Zhong, H. (2010). Production and characterization of biosurfactant from Bacillus subtilis CCTCC AB93108. Journal of Central South University of Technology, 17, 516-521. DOI: 10.1007/s11771-010-0516-2.10.1007/s11771-010-0516-2Search in Google Scholar

23. Meng, J. Q., Yin, F. F. & Li, S. C. (2019). Effect of different concentrations of surfactant on the wettability of coal by molecular dynamics simulation. International Journal of Mining Science and Technology, 29(4), 577-584. DOI: 10.1016/j.ijmst.2019.06.010.10.1016/j.ijmst.2019.06.010Search in Google Scholar

24. Mnif, I. & Ghribi, D. (2015). Review lipopeptides biosurfactants: Mean classes and new insights for industrial, biomedical, and environmental applications. Biopolymers, 104(3), 129-147. DOI: 10.1002/bip.22630.10.1002/bip.22630Search in Google Scholar

25. Nakano, M. M., Corbell, N. & Besson, J. (1992). Isolation and characterization of sfp: a gene that functions in the production of the lipopeptide biosurfactant, surfactin, in Bacillus subtilis. Molecular & general genetics : MGG, 232(2), 313-321.10.1007/BF00280011Search in Google Scholar

26. Narayan, B. S., Suparna, S. & Lalit, G. (2019). Rice based distillers dried grains with solubles as a low cost substrate for the production of a novel rhamnolipid biosurfactant having anti-biofilm activity against Candida tropicalis. Colloids and Surfaces B: Biointerfaces, 182, 110-358. DOI: 10.1016/j.colsurfb.2019.110358.10.1016/j.colsurfb.2019.110358Search in Google Scholar

27. Nitschke, M. & Costa, S. G. V. A. O. (2007). Biosurfactants in food industry. Trends in Food Science & Technology, 18(5), 0-259. DOI: 10.1016/j.tifs.2007.01.002.10.1016/j.tifs.2007.01.002Search in Google Scholar

28. Ruksana, J., Andrew, M. B. & Marina, T. (2019). Biosurfactants, natural alternatives to synthetic surfactants: Physicochemical properties and applications. Advances in Colloid and Interface Science, 275(275). DOI: 10.1016/j.cis.2019.102061.10.1016/j.cis.2019.102061Search in Google Scholar

29. Singh, R., Glick, B. R. & Rathore, D. (2018). Biosurfactants as a Biological Tool to Increase Micronutrient Availability in Soil: A Review. Pedosphere, 28(02), 170-189. DOI: 10.1016/S1002-0160(18)60018-9.10.1016/S1002-0160(18)60018-9Search in Google Scholar

30. Sinha, R. K., Bharambe, G. & Ryan, D. (2008). Converting wasteland into wonderland by earthwormsa low-cost nature’s technology for soil remediation: a case study of vermiremediation of PAHs contaminated soil. The Environmentalist, 28 (4), 466-47510.1007/s10669-008-9171-7Search in Google Scholar

31. Syldatk, C., Lang, S. & Wagner, F. (1985). Chemical and physical characterization of four interfacialactive rhamnolipids from Pseudomonas spec. DSM 2874 grown on n-alkanes. Zeitschrift fur Naturforschung. Section C, Biosciences, 40(1-2), 51-60.10.1515/znc-1985-1-212Search in Google Scholar

32. Takassi, M. A., Hashemi, A. & Rostami, A. (2016). A lysine amino acid-based surfactant: Application in enhanced oil recovery. Petroleum Science and Technology, 34(17-18), 1521-1526. DOI: 10.1080/10916466.2016.1205605.10.1080/10916466.2016.1205605Search in Google Scholar

33. Yang, X., Shu, G.W. & Lei, Z. T. (2019). Effect of Carbon Sources, Nitrogen Sources and Prebiotics on Growth of Saccharomyces Boulardii. Acta Universitatis Cibiniensis. Series E: Food Technology, 23(2), 101-108. DOI: 10.2478/aucft-2019-0013.10.2478/aucft-2019-0013Search in Google Scholar

34. Zhao, Y. J. (2018). Review on the Development of the Surfactant Industry in China During the “12~(th) Five-year Plan” Period. China Detergent & Cosmetics, 3(02), 23-29.Search in Google Scholar

35. Zhang, D. R., Sun, Y. G. & Deng, Q. H. (2016). Study of the Environmental Responsiveness of Amino Acid-based Surfactant Sodium Lauroylglutamate and its Foam Characteristics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 504, 384-392. DOI: 10.1016/j.colsurfa.2016.05.097.10.1016/j.colsurfa.2016.05.097Search in Google Scholar

36. Zuckerberg, A., Diver, A. & Peeri, Z. (1979). Emulsifier of Arthrobacter RAG-1: chemical and physical properties. Applied and environmental microbiology, 37(3), 414-420.10.1128/aem.37.3.414-420.1979243231453822Search in Google Scholar

eISSN:
2344-150X
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, other, Food Science and Technology