À propos de cet article

Citez

Shim S.M., Ferruzzi M.G., Kim Y. C., Janle E.M., Santerre C.R. (2009). Impact of phytochemical-rich foods on bioaccessibility of mercury from fish. Food Chem., 112: 46–50. Search in Google Scholar

Makkar H.P.S., Francis G., Becker K. (2007). Bioactivity of phytochemicals in some lesser-known plants and their effects and potential applications in livestock and aquaculture production systems. Animal, 1: 1371–1391. Search in Google Scholar

Adeel M., Song X., Wang Y., Francis D., Yang Y. (2017). Environmental impact of estrogens on human animal and plant life: A critical review, Environ. Int., 99:107-119. https://doi,org/10,1016/j,envint,2016,12,010 Search in Google Scholar

Adlercreutz H. (1995). Phytoestrogens: Epidemiology and a Possible Role in Cancer Protection, Environ. Health Prespect., 103-112. Search in Google Scholar

Adlercreutz H. (2002). Phyto-oestrogens and cancer, Lancet Oncol., 3: 364-373. https://doi.org/10.1016/S1470-2045(02)00777-5 Search in Google Scholar

Akiyama T., Ishida J., Nakagawa S., Ogawara H., Watanabe S., Itoh N., Shibuya M., Fukami Y. (1987). Genistein a specific inhibitor of tyrosine-specific protein kinases, J. Biol. Chem., 262: 5592-5595. https://doi,org/10,1016/S0021-9258(18)45614-1 Search in Google Scholar

Al-Anazi A.F., Qureshi V.F., Javaid K., Qureshi S. (2011). Preventive effects of phytoestrogens against postmenopausal osteoporosis as compared to the available therapeutic choices: An overview, J. Nat. Sci. Bio. Med., 2: 154-163. doi: 10,4103/0976-9668,92322 Search in Google Scholar

Andersen H., Siegrist H., Halling-Sørensen B., Ternes T.A. (2003). Fate of Estrogens in a Municipal Sewage Treatment Plant, Environ. Sci. Technol., 37: 4021-4026. https://doi,org/10,1021/es026192a Search in Google Scholar

Ankley G.T., Bencic D.C., Breen M.S., Collette T.W., Conolly R.B., Denslow N.D., Edwards S.W., Ekman D.R., Garcia-Reyero N., Jensen K.M. (2009). Endocrine disrupting chemicals in fish: developing exposure indicators and predictive models of effects based on mechanism of action. Aquat. Toxicol., 92: 168-178. https://doi.org/10.1016/j.aquatox.2009.01.013. Search in Google Scholar

Azizi-Lalabadi M., Pirsaheb M. (2021). Investigation of steroid hormone residues in fish: A systematic review. Process Saf. Environ. Prot., 152: 14-24. https://doi.org/10.1016/j.psep.2021.05.020 Search in Google Scholar

Baatrup E., Junge M. (2001). Antiandrogenic pesticides disrupt sexual characteristics in the adult male guppy Poecilia reticulata. Environ. Health Perspect., 109: 1063-1070. https://doi.org/10.1289/ehp.011091063 Search in Google Scholar

Bagheri T., Imanpoor M. R., Jafari V. (2012). Effects of diets containing genistein and diadzein in a long-term study on sex steroid dynamics of goldfish (Carassius auratus). Toxicol. Ind. Health, 30: 132-140. https://doi.org/10.1177/07482337124526. Search in Google Scholar

Beck V., Rohr U., Jungbauer A. (2005). Phytoestrogens derived from red clover: An alternative to estrogen replacement therapy J Steroid Biochem. Mol. Biol., 94: 499-518. https://doi.org/10.1016/j.jsbmb.2004.12.038. Search in Google Scholar

Bell K.Y., Wells M.J.M., Traexler K.A., Pellegrin M.L., Morse A., Bandy J. (2011). Emerging Pollutants. Water Environ. Res., 83: 1906-1984. https://doi.org/10.2175/106143011X13075599870298. Search in Google Scholar

Bennetau-Pelissero C., Breton B.B., Bennetau B., Corraze G., Le Menn F., Davail-Cuisset B., Helou C., Kaushik S.J. (2001a). Effect of genistein-enriched diets on the endocrine process of gametogenesis and on reproduction efficiency of the Rainbow trout Oncorhynchus mykiss. Gen. Comp. Endocrinol., 121:173-187. https://doi.org/10.1006/gcen.2000.7585. Search in Google Scholar

Bilal I., Chowdhury A., Davidson J., Whitehead S. (2014). Phytoestrogens and prevention of breast cancer: The contentious debate. World J. Clin. Oncol., 5: 705-712. doi: 10.5306/wjco.v5.i4.705. Search in Google Scholar

Boddy A.V., Yule S.M. (2000). Metabolism and pharmacokinetics of oxazaphosphorines. Clin. pharmacokinet, 38: 291-304. https://doi.org/10.2165/00003088-200038040-00001 Search in Google Scholar

Bodo C., Rissman E. (2006). New roles for estrogen receptor β in behavior and neuroendocrinology. Front. Neuroendocrinol., 27 217-232. https://doi.org/10.1016/j.yfrne.2006.02.004. Search in Google Scholar

Bower N.I., Johnston I.A. (2010). Transcriptional regulation of the IGF signaling pathway by amino acids and insulin-like growth factors during myogenesis in Atlantic salmon, PLoS One, 5: pe11100. https://doi.org/10.1371/journal.pone.0011100 Search in Google Scholar

Bower N.I., Li X., Taylor R., Johnston I.A. (2008). Switching to fast growth: the insulin-like growth factor (IGF) system in skeletal muscle of Atlantic salmon. J. Exp. Biol., 211: 3859-3870. https://doi.org/10.1242/jeb.024117 Search in Google Scholar

Brown A.C., Stevenson L.M., Leonard H.M., Nieves-Puigdoller K., Clotfelter E.D. (2014). Phytoestrogens β -sitosterol and genistein have limited effects on reproductive endpoints in a female fish Betta splendens. Biomed. Res. Int., 681396-681396. https://doi.org/10.1155/2014/681396. Search in Google Scholar

Cederroth C.R., Zimmermann C., Nef S. (2012). Soy phytoestrogens and their impact on reproductive health. Mol. Cell. Endocrinol., 355 192-200. https://doi.org/10.1016/j.mce.2011.05.049. Search in Google Scholar

Cek S., Turan F., Atik E. (2007). The effects of Gokshura Tribulus terrestris on sex reversal of guppy Poecilia reticulata. Pak. J. Biol. Sci., 10: 718-725. DOI: 10.3923/pjbs.2007.718.725. Search in Google Scholar

Cek S., Turan F., Atik E. (2007). Masculinization of convict cichlid (Cichlasoma nigrofasciatum) by immersion in Tribulus terrestris extract, Aquacult. Int., 5:109-119. https://doi.org/10.1007/s10499-006-9071-0 Search in Google Scholar

Chakraborty S.B., Horn P., Hancz C. (2013). Application of phytochemicals as growth-promoters and endocrine modulators in fish culture. Rev. Aquac., 6: 1-19. https://doi.org/10.1111/raq.12021 Search in Google Scholar

Christiansen L.B., Winther-Nielsen M., Helweg C. (2002). Feminisation of fish, The effect of estrogenic compounds and their fate in sewage treatment plants and nature. Environmental Project. Cleveland B.M. (2014). In vitro and in vivo effects of phytoestrogens on protein turnover in rainbow trout (Oncorhynchus mykiss) white muscle. Comp. Biochem. Physiol. Part C, 165 :9-16. https://doi.org/10.1016/j.cbpc.2014.05.003. Search in Google Scholar

Cleveland B.M., Manor M.L. (2015a). Effects of phytoestrogens on growth-related and lipogenic genes in rainbow trout (Oncorhynchus mykiss), Comp. Biochem. Physiol. Part C, 170: 28-37. https://doi.org/10.1016/j.cbpc.2015.02.001. Search in Google Scholar

Clotfelter E.D., Bell A.M., Levering K.R. (2004). The role of animal behaviour in the study of endocrine-disrupting chemicals, Anim. Behav., 68: 665-676. https://doi.org/10.1016/j.anbehav.2004.05.004. Search in Google Scholar

Clotfelter E.D., Rodriguez A.C. (2006). Behavioral changes in fish exposed to phytoestrogens, Environment. Pollut., 144: 833-839. https://doi.org/10.1016/j.envpol.2006.02.007 Search in Google Scholar

Cos P., De Bruyne T., Apers S., Berghe D.V., Pieters L, Vlietinck A.J. (2003). Phytoestrogens: recent developments. Planta. medica., 69: 589-599. Search in Google Scholar

Cowan M., Azpeleta C., Lopez-Olmeda J.F. (2017). Rhythms in the endocrine system of fish: a review J. Comp. Physiol. part B, 187: 1057-1089. https://doi.org/10.1007/s00360-017-1094-5 Search in Google Scholar

Czarny K., Szczukocki D., Krawczyk B., Zieliński M., Miękoś E., Gadzała-Kopciuch R. (2017). The impact of estrogens on aquatic organisms and methods for their determination, Crit. Rev. Environ. Sci. Technol., 47: 909-963. https://doi.org/10.1080/10643389.2017.1334458. Search in Google Scholar

Desmawati D., Sulastri D. ( 2019). Phytoestrogens and their health effect. Maced. J. Med. Sci., 7:495. Search in Google Scholar

DiMaggio M.A., Kenter L.W., Breton T.S., Berlinsky D.L. (2014). Effects of dietary genistein administration on growth survival and sex determination in southern flounder Paralichthys lethostigma. Aquac. Res., 47: 82-90. https://doi.org/10.1111/are.12470. Search in Google Scholar

Dixon R.A. (2004). Phytoestrogens, Annu. Rev. Plant Biol., 55: 225-261. Search in Google Scholar

Duffy C., Perez K., Partridge A. (2007). Implications of pytoestrogen intake for breast cancer, CA: Cancer J. Clin., 57: 260-277. Search in Google Scholar

El-Darawany A., Moustafa A., Al-Marakby K.M., Nasr A., Naiel M.A., Elewa Y.H.A. (2016). Effect of exogenous hormone treatments on spermatogenesis in male grey mullet out of the spawning season. Int. J. Fish. Aquat. Stud. Search in Google Scholar

El-Greisy Z., El-Gamal A. (2012). Monosex production of tilapia Oreochromis niloticus using different doses of 17α-methyltestosterone with respect to the degree of sex stability after one year of treatment. The Egypt. J. Aquat. Res., 38: 59-66. https://doi.org/10.1016/j.ejar.2012.08.005. Search in Google Scholar

El-Sayed A.F.M., Abdel-Aziz E.S.H., Abdel-Ghani H.M. (2012a). Effects of phytoestrogens on sex reversal of Nile tilapia (Oreochromis niloticus) larvae fed diets treated with 17α-Methyltestosterone. Aquac., 360: 58-63. https://doi.org/10.1016/j.aquaculture.2012.07.010. Search in Google Scholar

Elnakeeb M., Vasilyeva L., Sudakova N., Anokhina A., Gewida A.G., Amer M.S., Naiel M. (2021a). Paddlefish Polyodon spathula: Historical current status and future aquaculture prospects in Russia, Int. Aquat. Res., 13: 89-107. Search in Google Scholar

Elnakeeb M., Vasilyeva L., Sudakova N., Aokhina A., Gewida A., Alagawany M., Naiel M. (2021b). Evaluate the metabolism responses of cultured paddlefish polyodon spathula (walbaum 1792) towards some ecological stressors in the volga-caspian basin using fuzzy modeling control. Adv. Anim. Vet. Sci., 9: 773-786. Search in Google Scholar

Fath El-Bab A.F., Majrashi K.A., Sheikh H.M., Shafi M.E., El-Ratel I.T., Neamat-Allah A.N., El-Raghi A.A., Elazem A.Y.A., Abd-Elghany M. F., Abdelnour S.A. (2022). Dietary supplementation of Nile tilapia (Oreochromis niloticus) with β-glucan and/or Bacillus coagulans: Synergistic impacts on performance immune responses redox status and expression of some related genes, Front. vet. sci., 23; 9:1011715 Search in Google Scholar

Felix F.B., Vago J.P., Beltrami V.A., Araújo J.M.D., Grespan R., Teixeira M.M., Pinho V. (2022). Biochanin A as a modulator of the inflammatory response: an updated overview and therapeutic potential. Pharmacol. Res., 106246. Search in Google Scholar

Francis G., Makkar H.P.S., Becker K. (2001). Antinutritional factors present in plant-derived alternate fish feed ingredients and their effects in fish, Aquac., 199 197-227. Search in Google Scholar

Gabillard J.C., Kamangar B.B., Montserrat N. (2006). Coordinated regulation of the GH/IGF system genes during refeeding in rainbow trout (Oncorhynchus mykiss), J. Endocrinol., 191 15-24. Search in Google Scholar

Gatlin D.M., Barrows F.T., Brown P., Dabrowski K., Gaylord T.G., Hardy R.W., Herman E., Hu G, Krogdahl Å., Nelson R., Overturf K., Rust M., Sealey W., Skonberg D. J., Souza E, Stone D., Wilson R., Wurtele E. (2007). Expanding the utilization of sustainable plant products in aquafeeds: a review, Aquac. Res., 38 551-579. Search in Google Scholar

Glencross B., Evans D., Rutherford N., Hawkins W., McCafferty P., Dods K., Jones B., Harris D., Morton L., Sweetingham M., Sipsas S. (2006). The influence of the dietary inclusion of the alkaloid gramine on rainbow trout (Oncorhynchus mykiss) growth feed utilisation and gastrointestinal histology, Aquac., 253 512-522. Search in Google Scholar

Gontier-Latonnelle K., Cravedi J.P., Laurentie M., Perdu E., Lamothe V., Le Menn F., Bennetau-Pelissero C. (2007). Disposition of genistein in rainbow trout (Oncorhynchus mykiss) and siberian sturgeon (Acipenser baeri), Gen. and comp. endocrinol., 150 298-308. Search in Google Scholar

Gorzkiewicz J., Bartosz G., Sadowska-Bartosz I. (2021). The potential effects of phytoestrogens: The role in neuroprotection, Molecules, 26 2954. Search in Google Scholar

Grzelkowska‐Kowalczyk K., Wieteska‐Skrzeczyńska W., Grabiec K., Tokarska J. (2013). High glucose‐mediated alterations of mechanisms important in myogenesis of mouse C2C12 myoblasts, Cell biol. int., 37 29-35. Search in Google Scholar

Guiguen Y., Fostier A., Piferrer F., Chang C.F. (2010). Ovarian aromatase and estrogens: a pivotal role for gonadal sex differentiation and sex change in fish, Gen. comp. endocrinol. 165 352-366. Search in Google Scholar

Hara A., Hiramatsu N., Fujita T. (2016). Vitellogenesis and choriogenesis in fishes, J. Fish. sci., 82 187-202. Search in Google Scholar

Hoga C.A., Almeida F.L., Reyes F.G. (2018). A review on the use of hormones in fish farming: Analytical methods to determine their residues, CYTA - J. Food, 16 679-691. Search in Google Scholar

Hutchinson T.H., Ankley G.T., Segner H., Tyler C.R. (2006). Screening and testing for endocrine disruption in fish—biomarkers as “signposts” not “traffic lights” in risk assessment, Environ. health perspec., 114 106-114. Search in Google Scholar

Ingham R.R., Gesualdi D.A., Toth C,R, Clotfelter E,D, 2004, Effects of Genistein on Growth and Development of Aquatic Vertebrates, Bull. Environ. Contam. Toxicol.,72 625-631. Search in Google Scholar

Inudo M., Ishibashi H., Matsumura N., Matsuoka M., Mori T., Taniyama S., Kadokami K., Koga M., Shinohara R., Hutchinson T. (2004). Effect of estrogenic activity and phytoestrogen and organochlorine pesticide contents in an experimental fish diet on reproduction and hepatic vitellogenin production in medaka (Oryzias latipes), Comp. med., 54 673-680. Search in Google Scholar

Jackson C. J., Dini J., Lavandier C., Rupasinghe H., Faulkner H., Poysa V., Buzzell D., DeGrandis S. (2002). Effects of processing on the content and composition of isoflavones during manufacturing of soy beverage and tofu, Process bioch., 37 1117-1123. Search in Google Scholar

Kausch U., Alberti M., Haindl S., Budczies J., Hock B. (2008). Biomarkers for exposure to estrogenic compounds: gene expression analysis in zebrafish (Danio rerio), Environ. toxicol., 23 15-24. Search in Google Scholar

Kaushik S.J., Cravedi J.P., Lalles J.P., Sumpter J., Fauconneau B., Laroche M., (1995). Partial or total replacement of fish meal by soybean protein on growth protein utilization potential estrogenic or antigenic effects cholesterolemia and flesh quality in rainbow trout Oncorhynchus mykiss, Aquac., 133 257-274. Search in Google Scholar

Kazeto Y., Place A.R., Trant J.M. (2004). Effects of endocrine disrupting chemicals on the expression of CYP19 genes in zebrafish (Danio rerio) juveniles, Aquat. toxicol., 69 25-34, Search in Google Scholar

Kim S. H., Park M.J. (2012). Effects of phytoestrogen on sexual development, Korean J. pediatr., 55 265. Search in Google Scholar

Kiparissis Y., Balch G.C., Metcalfe T.L., Metcalfe C.D. (2003). Effects of the isoflavones genistein and equol on the gonadal development of Japanese medaka Oryzias latipes, Environ. health perspec., 111 1158-1163. Search in Google Scholar

Kloas W., Urbatzka R., Opitz R., Würtz S., Behrends T., Hermelink B., Hofmann F., Jagnytsch O., Kroupova H., Lorenz C. (2009). Endocrine disruption in aquatic vertebrates, Ann. N. Y. Acad. Sci., 1163 187-200. Search in Google Scholar

Kostelac D., Rechkemmer G., Briviba K. (2003). Phytoestrogens modulate binding response of estrogen receptors α and β to the estrogen response element, J. Agric. Food Chem. 51 7632-7635. Search in Google Scholar

Kurzer M.S., Xu X. (1997). Dietary Phytoestrogens, Annu. Rev. Nutr., 17 353-381. Search in Google Scholar

Laredo S.A., Landeros R.V., Trainor B.C. (2014). Rapid effects of estrogens on behavior: environmental modulation and molecular mechanisms, Front. Neuroendocrinol., 35 447-458. Search in Google Scholar

Lecomte S., Demay F., Ferrière F., Pakdel F. (2017). Phytochemicals targeting estrogen receptors: Beneficial rather than adverse effects. Int. J. Mol. Sci., 18 1381. Search in Google Scholar

Leusch F.D., MacLatchy D.L. (2003). In vivo implants of β-sitosterol cause reductions of reactive cholesterol pools in mitochondria isolated from gonads of male goldfish (Carassius auratus), Gen. Comp. Endocrinol., 134 255-263. Search in Google Scholar

Liu Z.h., Kanjo Y., Mizutani S. (2010). A review of phytoestrogens: their occurrence and fate in the environment, Water res., 44 567-577. Search in Google Scholar

Lozi A.A., Pinto da Matta S.L., Sarandy M.M., Silveira Alves de Melo F.C., Araujo D.C., Novaes R.D., Gonçalves R.V., (2021). Relevance of the Isoflavone Absorption and Testicular Function: A Systematic Review of Preclinical Evidence, Evid.-based Complement. Altern. Med. Makarewicz M., Drożdż I., Tarko T., Duda-Chodak A. (2021). The Interactions between polyphenols and microorganisms especially gut microbiota, Antioxidants 10 188, Search in Google Scholar

Miyahara M., Ishibashi H., Inudo M., Nishijima H., Iguchi T., Guillette Jr L.J., Arizono K. (2003). Estrogenic Activity of a Diet to Estrogen Receptors -,ALPHA, and -,BETA, in an Experimental J. Anim. Sci., 49 481-491. Search in Google Scholar

Mohammed A. (2013). Why are early life stages of aquatic organisms more sensitive to toxicants than adults, New insights into toxicity and drug testing, 49-62. Search in Google Scholar

Morito K., Hirose T., Kinjo J., Hirakawa T., Okawa M., Nohara T., Ogawa S., Inoue S., Muramatsu M., Masamune Y. (2001). Interaction of phytoestrogens with estrogen receptors α and β, Biol. Pharm. Bull., 24 351-356. Search in Google Scholar

Naiel M.A., Abd El-hameed S.A., Arisha A.H., Negm S.S. (2022). Gum Arabic-enriched diet modulates growth antioxidant defenses innate immune response intestinal microbiota and immune related genes expression in tilapia fish, Aquac., 556 738249. Search in Google Scholar

Ng Y., Hanson S., Malison J.A., Wentworth B., Barry T.P. (2006). Genistein and other isoflavones found in soybeans inhibit estrogen metabolism in salmonid fish, Aquac., 254 658-665. Search in Google Scholar

Ofir R., Tamir S., Khatib S., Vaya J. (2003). Inhibition of serotonin re-uptake by licorice constituents, J. Mol. Neurosci., 20 135-140. Search in Google Scholar

Park I.S., Oh H., Koo J.G. (2003). Effect of oral tamoxifen on growth and survival in the bagrid catfish Pseudobagrus fulvidraco, Aquac. Res., 34 1471-1474. Search in Google Scholar

Paterni I., Granchi C., Katzenellenbogen J.A., Minutolo F. (2014). Estrogen receptors alpha (ERα) and beta (ERβ): subtype-selective ligands and clinical potential, Steroids, 90 13-29. Search in Google Scholar

Patisaul H.B. (2017). Endocrine disruption by dietary phyto-oestrogens: impact on dimorphic sexual systems and behaviours, Proc. Nutr. Soc. 76 130-144. Search in Google Scholar

Pelissero C., Bennetau B., Babin P., Le Menn F., Dunogues J. (1991). The estrogenic activity of certain phytoestrogens in the Siberian sturgeon Acipenser baeri, J Steroid Biochem. Mol. Biol., 38 293-299. Search in Google Scholar

Pelissero C., Flouriot G., Foucher J.L., Bennetau B., Dunogues J., Le Gac F., Sumpter J., 1993. Vitellogenin synthesis in cultured hepatocytes; an in vitro test for the estrogenic potency of chemicals, The Journal of Steroid Biochemistry and Mol. Biol., 44 263-272. Search in Google Scholar

Pelissero C., Lenczowski M., Chinzi D., Davail-Cuisset B., Sumpter J., Fostier A. (1996). Effects of flavonoids on aromatase activity an in vitro study, J. Steroid Biochem. Mol. Biol., 57 215-223. Search in Google Scholar

Puglisi E., Nicelli M., Capri E., Trevisan M., Del Re A.A. (2003). Cholesterol β‐sitosterol ergosterol and coprostanol in agricultural soils, J. Environ. Qual., 32 466-471. Search in Google Scholar

Refstie S., Baeverfjord G., Seim R.R., Elvebø O. (2010). Effects of dietary yeast cell wall β-glucans and MOS on performance gut health and salmon lice resistance in Atlantic salmon (Salmo salar) fed sunflower and soybean meal, Aquac., 305 109-116. Search in Google Scholar

Ren Y., Zhou Q., Liu Y., Wang Y., Wang Q., Jiang X., Yu Q., Zhang H. (2018). Effects of estradiol‐17β on survival growth performance gonadal structure and sex ratio of the tiger puffer Takifugu rubripes (Temminck & Schlegel 1850) fingerlings, Aquac. Res., 49 1638-1646. Search in Google Scholar

Rice S., Mason H.D., Whitehead S.A. (2006). Phytoestrogens and their low dose combinations inhibit mRNA expression and activity of aromatase in human granulosa-luteal cells, J. Steroid Biochem. Mol. Biol., 101 216-225. Search in Google Scholar

Rietjens I.M., Louisse J., Beekmann K. (2017). The potential health effects of dietary phytoestrogens, Br. J. Pharmacol., 174 1263-1280. Search in Google Scholar

Rietjens I.M., Sotoca A.M., Vervoort J., Louisse J. (2013). Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks, Mol. Nutr. Food Res., 57 100-113. Search in Google Scholar

Robertson K.M., O’Donnell L., Simpson E.R., Jones M.E. (2002). The phenotype of the aromatase knockout mouse reveals dietary phytoestrogens impact significantly on testis function, Endocrinol., 143 2913-2921. Search in Google Scholar

Rønnestad I., Gomes A.S., Murashita K., Angotzi R., Jönsson E., Volkoff H. (2017). Appetite-controlling endocrine systems in teleosts, Front. in endocrin. 8 73. Search in Google Scholar

Safian D., Fuentes E.N., Valds J.A., Molina A. (2012). Dynamic transcriptional regulation of autocrine/paracrine igfbp1 2 3 4 5 and 6 in the skeletal muscle of the fine flounder during different nutritional statuses, J.endocrinol. 214 95. Search in Google Scholar

Samanta A., Das G., Das S.K. (2011). Roles of flavonoids in plants, Carbon, 100 12-35. Search in Google Scholar

Sang H.M., Lam H.S., Hy L.H.K., Ky P.X., Minh-Thu P. (2019). Changes in plasma and ovarian steroid hormone level in wild female blue tang fish Paracanthurus hepatus during a reproductive cycle, Animals, 9 889. Search in Google Scholar

Sassi-Messai S., Gibert Y., Bernard L., Nishio S. I., Ferri Lagneau K.F., Molina J., Andersson-Lendahl M, Benoit G., Balaguer P., Laudet V. (2009a). The phytoestrogen genistein affects zebrafish development through two different pathways, PLoS One, 4 e4935-e4935. Search in Google Scholar

Sassi-Messai S., Gibert Y., Bernard L., Nishio S. I., Ferri Lagneau K.F., Molina J., Andersson-Lendahl M., Benoit G., Balaguer P., Laudet V. (2009b). The phytoestrogen genistein affects zebrafish development through two different pathways, PLoS One, 4 e4935. Search in Google Scholar

Seguin P., Zheng W., Souleimanov A. (2004). Alfalfa phytoestrogen content: Impact of plant maturity and herbage components, Agron. Crop. Sci., 190 211-217. Search in Google Scholar

Silva Barbato A.C., Zubizarreta L., Quintana L. (2020). A teleost fish model to understand hormonal mechanisms of non-breeding territorial behavior, Front. Endocrinol., 2020 11: 468. Search in Google Scholar

Spitz I.M. (2003). Progesterone antagonists and progesterone receptor modulators: an overview, Steroids, 68 981-993. Search in Google Scholar

Trant J.M., Gavasso S., Ackers J., Chung B.C., Place A.R., (2001). Developmental expression of cytochrome P450 aromatase genes (CYP19a and CYP19b) in zebrafish fry (Danio rerio), J. Exp. Zool., 290 475-483. Search in Google Scholar

Turan F., Akyurt I., (2005). Effects of red clover extract on growth performance and body composition of African catfish Clarias gariepinus, Fish. Sci., 71 618-620. Search in Google Scholar

Tzchori I., Degani G., Elisha R., Eliyahu R., Hurvitz A., Vaya J., Moav B. (2004a). The influence of phytoestrogens and oestradiol-17beta on growth and sex determination in the European eel (Anguilla anguilla), Aquac. Res., 35 1213-1219. Search in Google Scholar

Tzchori I., Degani G., Elisha R., Eliyahu R., Hurvitz A., Vaya J., Moav B., (2004b). The influence of phytoestrogens and oestradiol‐17β on growth and sex determination in the European eel (Anguilla anguilla), Aquac. res., 35 1213-1219. Search in Google Scholar

Wedekind C. (2014). Fish populations surviving estrogen pollution, BMC biology 12 1-3. Search in Google Scholar

Wojnarowski K., Podobiński P., Cholewińska P., Smoliński J., Dorobisz K. (2021). Impact of estrogens present in environment on health and welfare of animals, Animals, 11: 2152. Search in Google Scholar

Yildiz F. (2005). Phytoestrogens in Functional Foods. Taylor & Francis Ltd. pp. 3–5, 210–211. ISBN 978-1-57444-508-4. Search in Google Scholar

Yılmaz E., Çek Ş., Mazlum Y., (2009). The effects of combined phytoestrogen administration on growth performance sex differentiation and body composition of sharptooth catfish Clarias gariepinus (Burchell 1822), Turk. J. Fish. Aquat. Sci., 9: 33-37. Search in Google Scholar

Yousefi Jourdehi A., Sudagar M., Bahmani M., Hosseini S.A., Dehghani A.A., Yazdani M.A., (2013). Comparative study of dietary soy phytoestrogens genistein and equol effects on growth parameters and ovarian development in farmed female beluga sturgeon Huso huso, Fish Physiol. Biochem., 40: 117-128. Search in Google Scholar

Zhang L., Khan I.A., Foran C.M., (2002). Characterization of the estrogenic response to genistein in Japanese medaka (Oryzias latipes), Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacol., 132: 203-211. Search in Google Scholar

Zhang Y., Song T.T., Cunnick J.E., Murphy P.A., Hendrich S. (1999). Daidzein and genistein glucuronides in vitro are weakly estrogenic and activate human natural killer cells at nutritionally relevant concentrations, J. Nutr., 129: 399–405. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine