À propos de cet article

Citez

Abarghuei M.J., Rouzbehan Y., Alipour D. (2011). Effect of oak (Quercus libani Oliv.) leave tannin on ruminal fermentation of sheep. J. Agric. Sci. Technol., 13: 1021–1032. Search in Google Scholar

Aboagye I.A., Oba M., Castillo A.R., Koenig K.M., Iwaasa A.D., Beauchemin K.A. (2018). Effects of hydrolysable tannin with or without condensed tannin on methane emissions, nitrogen use, and performance of beef cattle fed a high-forage diet. J. Anim. Sci. 96: 5276–5286. Search in Google Scholar

Adamczyk B., Simon J., Kitunen V., Adamczyk S., Smolander A. (2017 a). Tannins and their complex interaction with different organic nitrogen compounds and enzymes: old paradigms versus recent advances. Chemistry Open, 6: 610–614. Search in Google Scholar

Adamczyk B., Karonen M., Adamczyk S., Engstrӧm M.T., Laakso T., Saranpӓӓ P., Kitunen V., Smolander A., Simon J. (2017 b). Tannins can slow-down but also speed-up soil enzymatic activity in boreal forest. Soil Biol. Biochem., 107: 60–67. Search in Google Scholar

Aghamohamadi N., Hozhabri F., Alipour D. (2014). Effect of oak acorn (Quercus perlica) on ruminal fermentation of sheep. Small Rumin. Res., 120: 42–50. Search in Google Scholar

Amoako D., Awika J.M. (2016). Polyphenol interaction with food carbohydrates and consequences on availability of dietary glucose. Curr. Opin. Food Sci., 8: 14–18. Search in Google Scholar

AOAC (2011). Association of Official Analytical Chemists, Official Methods of Analysis.18th ed. Arlington, VA. Search in Google Scholar

Barbehenn R.V., Constabel C.P. (2011). Tannins in plant-herbivore interactions. Phytochemistry, 72: 1551–1565. Search in Google Scholar

Barrett A.H., Farhadi N.F., Smith T.J. (2018). Slowing starch digestion and inhibiting digestive enzyme activity using plant flavanols/tannins – A review of efficacy and mechanisms. LWT, 87: 394–399. Search in Google Scholar

Björck I.M., Nyman M.E. (1987). In vitro effects of phytic acid and polyphenols on starch digestion and fiber degradation. J. Food Sci., 52: 1588–1594. Search in Google Scholar

Carulla J.E., Kreuzer M., Machmüller A., Hess H.D. (2005). Supplementation of Acacia mearnsii tannins decreases methanogenesis and urinary nitrogen forage-fed sheep. Aust. J. Agric. Res., 56: 961–970. Search in Google Scholar

Chiquette J., Cheng K.J., Rode L.M., Milligan L.P. (1989). Effect of tannin content in two isosynthetic strains of birdsfoot trefoil (Lotus corniculatus L.) on feed digestibility and rumen fluid composition in sheep. Can. J. Anim. Sci., 69: 1031–1039. Search in Google Scholar

Cieślak A., Zmora P., Pers-Kamczyc E., Stochmal A., Sadowinska A., Salem A.Z.M., Kowalczyk D., Zbonik P., Szumacher-Strabel M. (2014). Effects of two sources of tannins (Quercus L. and Vaccinium vitis idaea L.) on rumen microbial fermentation: an in vitro study. Ital. J. Anim. Sci., 13: 3133. Search in Google Scholar

Cipriano-Salazar M., Rojas-Hernández S., Olivares-Pérez J., Jiménez-Guillén R., Cruz-Lagunas B., Camacho-Díaz L.M., Ugbogu A.E. (2018). Antibacterial activities of tannic acid against isolated ruminal bacteria from sheep. Microb., 117: 255–258. Search in Google Scholar

Colombini S., Graziosi A.R., Parma P., Iriti M., Vitalini S., Sarnataro C., Spanghero M. (2021). Evaluation of dietary addition of 2 essential oils from Achillea moschata, or their compounds (bornyl acetate, camphor, and eucalyptol) on in vitro ruminal fermentation and microbial community composition. Anim. Nutr., 7: 224–231. Search in Google Scholar

Daglia M. (2012). Polyphenols as antimicrobial agents. Curr. Opin. Biotech., 23: 174–181. Search in Google Scholar

Dehority B.A. (1993). Laboratory Manual for Classification and Morphology of Rumen Ciliate Protozoa. CRC Press Inc., London. Search in Google Scholar

Doce R.R., Hervás G., Belenguer A., Toral P.G., Giráldez F.J., Frutos P. (2009). Effect of the administration of young oak (Quercus pyrenaica) leaves to cattle on ruminal fermentation. Anim. Feed Sci. Technol., 150: 75–85. Search in Google Scholar

Frutos P., Hervás G., Giráldez F.J., Mantecón A.R. (2004). Review. Tannins and ruminant nutrition. Span. J. Agric. Res., 2: 191–202. Search in Google Scholar

Gäbel G., Sehested J. (1997). SCFA transport in the forestomach of ruminants. Comp. Biochem. Physiol., 118A: 367–374. Search in Google Scholar

Gherman C., Culea M., Cozar O. (2000). Comparative analysis of some active principles of herb plants by GC/MS. Talanta, 53: 253–262. Search in Google Scholar

Gonҫalves R., Mateus N., Freitas V. (2011). Inhibition of α-amylase activity by condensed tannins. Food Chem., 125: 665–672. Search in Google Scholar

Haro A.N., Carro M.D., de Evan T., González J. (2018). Protecting protein against ruminal degradation could contribute to reduced methane production. J. Anim. Physiol. Anim. Nutr. (Berl.), 102: 1482–1487. Search in Google Scholar

He Q., Lv Y., Yao K. (2006). Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase. Food Chem., 101: 1178–1182. Search in Google Scholar

Hess H.D., Tiemann T.T., Noto F., Carulla J.E., Kreuzer M. (2006). Strategic use of tannins as means to limit methane emission from ruminant livestock. Int. Congr. Ser., 1293: 164–167. Search in Google Scholar

Hoste H., Torres-Acosta J.F.J., Sandoval-Castro C.A., Mueller-Harvey I., Sotiraki S., Louvandini H., Thamsborg S.M., Terrill T.H. (2015). Tannin containing legumes as a model for nutraceuticals against digestive parasites in livestock. Vet. Parasitol., 212: 5–17. Search in Google Scholar

Huyen N.T., Fryganas C., Uittenbogaard G., Mueller-Harvey I., Verstegen M.W.A., Hendriks W.H., Pellikaan W.F. (2016). Structural features of condensed tannins affect in vitro ruminal methane production and fermentation characteristics. J. Agric. Sci., 154: 1474–1487. Search in Google Scholar

IZ PIB-INRA (2009). Ruminant Nutrition. Recommended Allowances and Feed Tables (in Polish). Jarrige E. (ed.), National Research Institute of Animal Production, Balice, Poland. Search in Google Scholar

Jayanegara A., Leiber F., Kreuzer M. (2012). Meta-analysis of the relationship between dietary tannin level and methane formation in ruminants from in vivo and in vitro experiments. J. Anim. Physiol. Anim. Nutr., 96: 365–375. Search in Google Scholar

Jayanegara A., Goel G., Makkar H.P.S., Becker K. (2015). Divergence between purified hydrolysable and condensed tannin effects on methane emission, rumen fermentation and microbial population in vitro. Anim. Feed Sci. Tech., 209: 60–68. Search in Google Scholar

Lavrenčič A., Pirman T. (2021). In vitro gas and short-chain fatty acid production from soybean meal treated with chestnut and quebracho wood extracts by using sheep rumen fluid. J. Anim. Feed Sci., 30: 312–319. Search in Google Scholar

Majewska M.P., Pająk J.J., Skomiał J., Miltko R., Kowalik B. (2017). The effect of lingonberry leaves and oak cortex addition to sheep diets on pancreatic enzymes activity. J. Animal Feed Sci., 26: 354–358. Search in Google Scholar

Majewska M.P., Miltko R., Bełżecki G., Kędzierska A., Kowalik B. (2021). Protozoa population and carbohydrate fermentation in sheep fed diet with different plant additives. Anim. Biosci., 34: 1146–1156. Search in Google Scholar

Majewska M.P., Miltko R., Bełżecki G., Kędzierska A., Kowalik B. (2022). Comparison of the effect of synthetic (tannic acid) or natural (oak bark extract) hydrolysable tannins addition on fatty acid profile in the rumen of sheep. Animals, 12: 699. Search in Google Scholar

McSweeney C.S., Palmer B., McNeill D.M., Krause D.O. (2001). Microbial interactions with tannins: nutritional consequences for ruminants. Anim. Feed Sci. Tech., 91: 83–93. Search in Google Scholar

Mergeduš A., Pšenková M., Brus M., Janžekovič M. (2018). Tannins and their effect on production efficiency of ruminants. Agricultura, 15: 1–11. Search in Google Scholar

Michałowski T. (1987). The volatile fatty acids production by ciliate protozoa in the rumen of sheep. Acta Protozool., 26: 335–345. Search in Google Scholar

Miltko R., Pietrzak M., Bełżecki G., Wereszka K., Michałowski T., Hackstein J.H.P. (2015). Isolation and in vitro cultivation of the fibrolytic rumen ciliate Eremoplastron (Eudiplodinium) dilobum. Eur. J. Protistol., 51: 109–117. Search in Google Scholar

Miltko R., Bełżecki G., Kowalik B., Skomiał J. (2016 a). Presence of carbohydrate-digesting enzymes throughout the digestive tract of sheep. Turk. J. Vet. Anim. Sci., 40: 271–277. Search in Google Scholar

Miltko R., Rozbicka-Wieczorek J.A., Więsyk E., Czauderna M. (2016 b). The influence of different chemical forms of selenium added to the diet including carnosic acid, fish oil and rapeseed oil on the formation of volatile fatty acids and methane in the rumen, and fatty acid profiles in the rumen content and muscles of lambs. Acta Vet., 66: 373–391. Search in Google Scholar

Miltko R., Majewska M.P., Bełżecki G., Kula K., Kowalik B. (2019). Growth performance, carcass and meat quality of lambs supplemented different vegetable oils. Asian-Australas. J. Anim. Sci., 32: 767–775. Search in Google Scholar

Min B.R., Attwood G.T., McNabb W.C., Molan A.L., Barry T.N. (2005). The effect of condensed tannins from Lotus corniculatus on the proteolytic activities and growth of rumen bacteria. Anim. Feed Sci. Technol., 121: 45–58. Search in Google Scholar

Mueller-Harvey I. (2001). Analysis of hydrolysable tannins. Anim. Feed Sci. Tech., 91: 3–20. Search in Google Scholar

Mueller-Harvey I. (2006). Unravelling the conundrum of tannins in animal nutrition and health. J. Sci. Food Agric., 86: 2010–2037. Search in Google Scholar

Newbold C.J., de la Fuente G., Belanche A., Ramos-Morales E., McEwan N.R. (2015). The role of ciliate protozoa in the rumen. Front Microbiol., 6: 1313. Search in Google Scholar

Ozkose E., Kuloǧlu R., Comlekcioglu U., Kar B., Akyol I., Ekinci M.S. (2011). Effects of tannic acid on the fibrolytic enzyme activity and survival of some ruminal bacteria. Int. J. Agric. Biol., 13: 386–390. Search in Google Scholar

Patra A.K., Saxena J. (2011). Exploitation of dietary tannins to improve rumen metabolism and ruminant nutrition. J. Sci. Food Agric., 91: 24–37. Search in Google Scholar

Rojas-Román L.A., Castro-Pérez B.I., Estrada-Angulo A., Angulo-Montoya C., Yocupicio-Rocha J.A., López-Soto M.A., Barreras A., Zinn R.A., Plascencia A. (2017). Influence of long-term supplementation of tannins on growth performance, dietary net energy and carcass characteristics: Finishing lambs. Small Rumin. Res., 153: 137–141. Search in Google Scholar

Salami S.A., Valenti B., Bella M., O’grady M.N., Luciano G., Kerry J.P., Jones E., Priolo A., Newbold C.J. (2018). Characterisation of the ruminal fermentation and microbiome in lambs supplemented with hydrolysable and condensed tannins. FEMS Microbiol., 94: fiy061. Search in Google Scholar

Salminen J-P., Karonen M. (2011). Chemical ecology of tannins and other phenolics: we need a change in approach. Funct. Ecol., 25: 325–338. Search in Google Scholar

Sarnataro C., Spanghero M. (2020). In vitro rumen fermentation of feed substrates added with chestnut tannins or an extract from Stevia rebaudiana Bertoni. Anim. Nutr., 6: 54–60. Search in Google Scholar

Seigler D.S. (1998). Chapter 12: Tannins. In: Plant Secondary Metabolism. Kluwer Academic Publishers, Dordrecht, pp. 193–214. Search in Google Scholar

Silanikove N., Perevolotsky A., Provenza F.D. (2001). Use of tannin-binding chemicals to assay for tannins and their negative postingestive effects in ruminants. Anim. Feed Sci. Technol., 91: 69–81. Search in Google Scholar

Singh B., Bhat T.K., Sharma O.P. (2001). Biodegradation of tannic acid in an in vitro ruminal system. Livest. Prod. Sci., 68: 259–262. Search in Google Scholar

Smeriglio A., Barreca D., Bellocco E., Trombetta D. (2017). Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Brit. J. Pharmacol., 174: 1244–1262. Search in Google Scholar

Śliwiński B.J., Kreuzer M., Wettstein H.-R., Machmüller A. (2002). Rumen fermentation and nitrogen balance of lambs fed diets containing plant extracts rich in tannins and saponins, and associated emissions of nitrogen and methane. Arch. Anim. Nutr., 56: 379–392. Search in Google Scholar

Terrill T.H., Douglas G.B., Foote A.G., Purchas R.W., Wilson G.F., Barry T.N. (1992). Effect of condensed tannins upon body growth and rumen metabolism in sheep grazing sulla (Hedysarum coronarium) and perennial pasture. J. Agric. Sci. Camb., 119: 265–273. Search in Google Scholar

Tong W.Y., Wang H., Waisundara V.Y., Huang D. (2014). Inhibiting enzymatic starch digestion by hydrolysable tannins isolated from Eugenia jambolana. LWT – Food Sci. Tech., 59: 389–395. Search in Google Scholar

Vasta V., Daghio M., Cappuci A., Buccioni A., Serra A., Viti C., Mele M. (2019). Invited review: Plant polyphenols and rumen microbiota responsible for fatty acid biohydrogenation, fibre digestion, and methane emission: Experimental evidence and methodological approaches. J. Dairy Sci., 102: 3781–3804. Search in Google Scholar

Wang Z., Yin L., Liu L., Lan X., He J., Wan F., Shen W., Tang S., Tan Z., Yang Y. (2022). Tannic acid reduced apparent protein digestibility and induced oxidative stress and inflammatory response without altering growth performance and ruminal microbiota diversity of Xiangdong black goats. Front. Vet. Sci., 9: 1004841. Search in Google Scholar

Williams A.G., Coleman G.S. (1997). The rumen protozoa. In: The rumen microbial ecosystem, Hobson P.N., Stewart C.S. (eds). 2nd ed. Berlin, Germany: Springer Science & Business Media. Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine