1. bookVolume 23 (2023): Edition 2 (April 2023)
Détails du magazine
Première parution
25 Nov 2011
4 fois par an
Accès libre

The effects of a Bacillus licheniformis and phytase mixture added to broiler diets on growth performance, nutrient digestibility, and cecal microecosystem

Publié en ligne: 03 May 2023
Volume & Edition: Volume 23 (2023) - Edition 2 (April 2023)
Pages: 545 - 559
Reçu: 18 Mar 2022
Accepté: 10 Nov 2022
Détails du magazine
Première parution
25 Nov 2011
4 fois par an

Alam S., Masood S., Zaneb H., Rabbani I., Khan R.U., Shah M., Ashraf S., Alhidary I.A. (2020). Effect of Bacillus cereus and phytase on the expression of musculoskeletal strength and gut health in Japanese quail (Coturnix japonica). J. Poult. Sci., 57: 200–204.Search in Google Scholar

Aviagen (2018). Ross Broiler Management Handbook. Aviagen Limited Newbridge Midlothian EH28 8SZ, Scotland, UK.Search in Google Scholar

Beaud D., Tailliez P., Anba-Mondoloni J. (2005). Genetic characterization of the β-glucuronidase enzyme from a human intestinal bacterium, Ruminococcus gnavus. Microbiology, 151: 2323–2330.Search in Google Scholar

Borda-Molina D., Vital M., Sommerfeld V., Rodehutscord M., Camarinha-Silva A. (2016). Insights into broilers’ gut microbiota fed with phosphorus, calcium, and phytase supplemented diets. Front. Microbiol., 7: 2033.Search in Google Scholar

Caporaso J.G., Kuczynski J., Stombaugh J., Bittinger K., Bushman F.D., Costello E.K., Fierrer N., Gonzalez PenÞa A., Goodrich J.K., Gordon J.I., Huttley G.A., Kelley S.T., Knights D., Koenig J.E., Ley R.E., Lozupone C.A., McDonald D., Muegge B.D., Pirrung M., Reeder J., Sevinsky J.R., Turnbaugh P.J., Walters W.A., Widmann J., Yatsunenko T., Zaneveld J., Knight R. (2010). QIIME allows analysis of high-throughput community sequencing data. Nat. Methods, 7: 335.Search in Google Scholar

Cowieson A.J., Ruckebusch J-P., Sorbara J.O.B., Wilson J.W., Guggenbuhl P., Roos F.F. (2017). A systematic view on the effect of phytase on ileal amino acid digestibility in broilers. Anim. Feed. Sci. Technol., 225: 182–194.Search in Google Scholar

DeSantis T.Z., Hugenholtz P., Larsen N., Rojas M., Brodie E.L., Keller K., Huber T., Dalevi D., Hu P., Andersen G.L. (2006). Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol., 72: 5069–5072.Search in Google Scholar

Directive EU. EU Directive 2010/63/EU of the European Parliament and the Council of 22 September 2010. Prot. Anim. Used Sci. Purp. Off. J. EU. 276: 33–79.Search in Google Scholar

Edgar R.C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics, 26: 2460–2461.Search in Google Scholar

European Food Safety Authority (2011). Scientific Opinion on the safety and efficacy of Optiphos® (6-phytase) as a feed additive for chickens and turkeys for fattening, chickens reared for laying, turkeys reared for breeding, laying hens, other birds for fattening and laying, weaned piglets, pigs for fattening and sows. EFSA Journal, 9: 2414.Search in Google Scholar

European Union Council Directive 2007/43/EC of 28 June 2007 laying down minimum rules for the protection of chickens kept for meat production. Off. J. Eur. Union, 182: 19–28.Search in Google Scholar

Gharib-Naseri K., Dorigam J.C.P., Doranalli K., Morgan N., Swick R.A., Choct M., Wu S-B. (2021). Bacillus amyloliquefaciens CECT 5940 improves performance and gut function in broilers fed different levels of protein and/or under necrotic enteritis challenge. Anim. Nutr., 7: 185–197.Search in Google Scholar

González-Ortiz G., Olukosi O.A., Jurgens G., Apajalahti J., Bedford M.R. (2020). Short-chain fatty acids and ceca microbiota profiles in broilers and turkeys in response to diets supplemented with phytase at varying concentrations, with or without xylanase. Poultry Sci., 99: 2068–2077.Search in Google Scholar

Gonzalez-Uarquin F., Kenéz Á., Rodehutscord M., Huber K. (2020). Dietary phytase and myo-inositol supplementation are associated with distinct plasma metabolome profile in broiler chickens. Animal, 14: 549–559.Search in Google Scholar

Guo J.R., Dong X.F., Liu S., Tong J.M. (2018). High-throughput sequencing reveals the effect of Bacillus subtilis CGMCC 1.921 on the cecal microbiota and gene expression in ileum mucosa of laying hens. Poultry Sci., 97: 2543–2556.Search in Google Scholar

Haas B.J., Gevers D., Earl A.M., Feldgarden M., Ward D.V., Giannoukos G., Ciulla D., Tabbaa D., Highlander S.K., Sodergren E., Methe B., DeSantis T.Z., Petrosino J.F., Knight R., Birren B.W. (2011). Chimeric 16S rRNA sequence formation and detection in Sanger and 454-pyrosequenced PCR amplicons. Genome Res., 21: 494–504.Search in Google Scholar

Hill F.W., Anderson D.L. (1958). Comparison of metabolizable energy and productive energy determinations with growing chicks. J. Nutr., 64: 587–603.Search in Google Scholar

Horwitz W., Latimer G. (2005). AOAC – Association of Official Analytical Chemists. Off Methods Anal AOAC Int 18th Ed, Gaithersburg, Maryland, USA, 45: 75–76.Search in Google Scholar

Jiang S.Q., Lamont S.J., Persia M.E. (2018). Differential growth performance and intestinal immune gene expression in diverse genetic lines of growing chickens fed a high concentration of supplemental phytase. J. Agric. Sci., 156: 258–264.Search in Google Scholar

Józefiak D., Kierończyk B., Juśkiewicz J., Zduńczyk Z., Rawski M., Długosz J., Sip A., Højberg O. (2013). Dietary nisin modulates the gastrointestinal microbial ecology and enhances growth performance of the broiler chickens. PLoS One, 8(12): e85347.Search in Google Scholar

Karimian R.A., Rezaeipour V. (2020). Effects of dietary mannan-oligosaccharides and phytase supplementation alone or in combination on growth performance, serum metabolites, cecal microbiota activity and intestinal morphology in broiler chickens. Poultry Sci. J., 8: 27–32.Search in Google Scholar

Konieczka P., Kaczmarek S.A., Hejdysz M., Kinsner M., Szkopek D., Smulikowska S. (2020). Effects of faba bean extrusion and phytase supplementation on performance, phosphorus and nitrogen retention, and gut microbiota activity in broilers. J. Sci. Food. Agric., 100: 4217–4225.Search in Google Scholar

Kozłowski K., Ognik K., Stępniowska A., Juśkiewicz J., Zduńczyk Z., Kierończyk B., Benzertiha A., Józefiak D., Jankowski J. (2021). Growth performance, immune status and intestinal fermentative processes of young turkeys fed diet with additive of full fat meals from Tenebrio molitor and Hermetia illucens. Anim. Feed Sci. Technol., 278: 114994.Search in Google Scholar

Kubena L.F., Byrd J.A., Young C.R., Corrier D.E. (2001). Effects of tannic acid on cecal volatile fatty acids and susceptibility to Salmonella typhimurium colonization in broiler chicks. Poultry Sci., 80: 1293–1298.Search in Google Scholar

Künzel S., Borda-Molina D., Kraft R., Sommerfeld V., Kühn I., Camarinha-Silva A., Rodehutscord M. (2019). Impact of coccidiostat and phytase supplementation on gut microbiota composition and phytate degradation in broiler chickens. Anim. Microbiome, 1: 5.Search in Google Scholar

Martin M. (2011). Cutadapt removes adapter sequences from highthroughput sequencing reads. EMBnet J., 17: 10.Search in Google Scholar

Musa B.B., Duan Y., Khawar H., Sun Q., Ren Z., Elsiddig Mohamed M.A., Abbasu I.H.R., Yang X. (2019). Bacillus subtilis B21 and Bacillus licheniformis B26 improve intestinal health and performance of broiler chickens with Clostridium perfringens-induced necrotic enteritis. J. Anim. Physiol. Anim. Nutr. (Berl.), 103: 1039–1049.Search in Google Scholar

Myers W.D., Ludden P.A., Nayigihugu V., Hess B.W. (2004). Technical note: a procedure for the preparation and quantitative analysis of samples for titanium dioxide. J. Anim. Sci., 82: 179–183.Search in Google Scholar

Narasimha J., Nagalakshmi D., Ramana Reddy Y., Viroji Rao S.T. (2013). Synergistic effect of non starch polysaccharide enzymes, synbiotics and phytase on performance, nutrient utilization and gut health in broilers fed with sub-optimal energy diets. Vet. World., 6: 754–760.Search in Google Scholar

Poormontaseri M., Hosseinzadeh S., Shekarforoush S.S., Kalantari T. (2017). The effects of probiotic Bacillus subtilis on the cytotoxicity of Clostridium perfringens type a in Caco-2 cell culture. BMC Microbiol., 17: 150.Search in Google Scholar

Ptak A., Bedford M.R., Świątkiewicz S., Żyła K., Józefiak D. (2015) Phytase modulates ileal microbiota and enhances growth performance of the broiler chickens. PLoS One, 10: e0119770.Search in Google Scholar

Rakoczy B. (2016). Act on the protection of animals used for scientific or educational purposes – legal regulation review. Dz. U. 266, 79–88.Search in Google Scholar

Richards P., Fothergill J., Bernardeau M., Wigley P. (2019). Development of the caecal microbiota in three broiler breeds. Front. Vet. Sci., 6: 201.Search in Google Scholar

Rychen G., Aquilina G., Azimonti G., Bampidis V., de Lourdes Bastos M., Bories G., et al. (2016). Safety and efficacy of B-Act® (Bacillus licheniformis DSM 28710) for chickens for fattening and chickens reared for laying. EFSA J., 14: e04615.Search in Google Scholar

Saleh A.A., Paray B.A., Dawood M.A.O. (2020). Olive cake meal and Bacillus licheniformis Impacted the growth performance, muscle fatty acid content, and health status of broiler chickens. Animals, 10: 695.Search in Google Scholar

Schramm V.G., Durau J.F., Barrilli L.N.E., Sorbara J.O.B., Cowieson A.J., Félix A.P., Maiorka A. (2017). Interaction between xylanase and phytase on the digestibility of corn and a corn/soy diet for broiler chickens. Poultry Sci., 96: 1204–1211.Search in Google Scholar

Shanmugasundaram R., Applegate T..J, Selvaraj R.K. (2020). Effect of Bacillus subtilis and Bacillus licheniformis probiotic supplementation on cecal Salmonella load in broilers challenged with Salmonella. J. Appl. Poult. Res., 29: 808–816.Search in Google Scholar

Singh K.M., Shah T., Deshpande S., Jakhesara S.J., Koringa P.G., Rank D.N., Joshi C.G. (2012). High through put 16S rRNA gene-based pyrosequencing analysis of the fecal microbiota of high FCR and low FCR broiler growers. Mol. Biol. Rep., 39: 10595–10602.Search in Google Scholar

Singh G., Verma A.K., Kumar V. (2016). Catalytic properties, functional attributes and industrial applications of β-glucosidases. Biotech, 6: 1–14.Search in Google Scholar

Smulikowska S., Mieczkowska A., Czerwinski J., Weremko D., Nguye C.V. (2006). Effects of exogenous phytase in chickens fed diets with differently processed rapeseed expeller cakes. J. Anim. Feed Sci., 15: 237–252.Search in Google Scholar

Smulikowska S., Czerwiński J., Mieczkowska A. (2010). Effect of an organic acid blend and phytase added to a rapeseed cake-containing diet on performance, intestinal morphology, caecal microflora activity and thyroid status of broiler chickens. J. Anim. Physiol. Anim. Nutr., 94: 15–23.Search in Google Scholar

Sommerfeld V., Künzel S., Schollenberger M., Kühn I., Rodehutscord M. (2018). Influence of phytase or myo-inositol supplements on performance and phytate degradation products in the crop, ileum, and blood of broiler chickens. Poultry Sci., 97: 920–929.Search in Google Scholar

Sypniewski J., Kierończyk B., Benzertiha A., Mikołajczak Z., Pruszyńska-Oszmałek E., Kołodziejski P., Sassek M., Rawski M., Czekała W., Józefiak D. (2020). Replacement of soybean oil by Hermetia illucens fat in turkey nutrition: effect on performance, digestibility, microbial community, immune and physiological status and final product quality. Br. Poult. Sci., 61: 394–302.Search in Google Scholar

Trela J., Kierończyk B., Hautekiet V., Józefiak D. (2020). Combination of Bacillus licheniformis and Salinomycin: effect on the growth performance and GIT microbial populations of broiler chickens. Animals, 10: 889.Search in Google Scholar

Upadhaya S.D., Rudeaux F., Kim I.H. (2019). Efficacy of dietary Bacillus subtilis and Bacillus licheniformis supplementation continuously in pullet and lay period on egg production, excreta microflora, and egg quality of Hyline-Brown birds. Poultry Sci., 98: 4722–4728.Search in Google Scholar

Verdal H. de, Mignon-Grasteau S., Jeulin C., Le Bihan-Duval E., Leconte M., Mallet S., Martin C., Narcy A. (2010). Digestive tract measurements and histological adaptation in broiler lines divergently selected for digestive efficiency. Poultry Sci., 89: 1955–1961.Search in Google Scholar

Walters H.G., Coelho M., Coufal C.D., Lee J.T. (2019). Effects of increasing phytase inclusion levels on broiler performance, nutrient digestibility, and bone mineralization in low-phosphorus diets. J. App. Poult. Res., 28: 1210–1225.Search in Google Scholar

Wealleans A.L., Walsh M.C., Romero L.F., Ravindran V. (2017). Comparative effects of two multi-enzyme combinations and a Bacillus probiotic on growth performance, digestibility of energy and nutrients, disappearance of non-starch polysaccharides, and gut microflora in broiler chickens. Poultry Sci., 96: 287–297.Search in Google Scholar

Xu S., Lin Y., Zeng D., Zhou M., Zeng Y., Wang H., Zhou Y., Zhu H., Pan K., Jing B., Ni X. (2018). Bacillus licheniformis normalize the ileum microbiota of chickens infected with necrotic enteritis. Sci. Rep., 8: 1–10.Search in Google Scholar

Xu Y., Yu Y., Shen Y., Li Q., Lan J., Wu Y., Zhang R., Cao G., Yang C. (2021). Effects of Bacillus subtilis and Bacillus licheniformis on growth performance, immunity, short chain fatty acid production, antioxidant capacity, and cecal microflora in broilers. Poultry Sci., 100: 101358.Search in Google Scholar

Yang J., Qian K., Zhang W., Xu Y., Wu Y. (2016). Effects of chromiumenriched Bacillus subtilis KT260179 supplementation on chicken growth performance, plasma lipid parameters, tissue chromium levels, cecal bacterial composition and breast meat quality. Lipids Health Dis., 15: 188.Search in Google Scholar

Yang J.-J., Qian K., Dong W.U., Zhang W., Yi-jing W.U., Ya-yuan X.U. (2017). Effects of different proportions of two Bacillus sp. on the growth performance, small intestinal morphology, caecal microbiota and plasma biochemical profile of Chinese Huainan Partridge Shank chickens. J. Integr. Agric., 16: 1383–1392.Search in Google Scholar

Zaghari M., Sarani P., Hajati H. (2020). Comparison of two probiotic preparations on growth performance, intestinal microbiota, nutrient digestibility and cytokine gene expression in broiler chickens. J. Appl. Anim. Res., 48: 166–175.Search in Google Scholar

Zeng X., Li Q., Yang C., Yu Y., Fu Z., Wang H., Fan X., Yue M., Xu Y. (2021). Effects of Clostridium butyricum- and Bacillus spp.- based potential probiotics on the growth performance, intestinal morphology, immune responses, and caecal microbiota in broilers. Antibiotics, 10: 624.Search in Google Scholar

Articles recommandés par Trend MD