1. bookVolume 22 (2022): Edition 4 (October 2022)
Détails du magazine
Première parution
25 Nov 2011
4 fois par an
Accès libre

New long-non coding RNAs related to fat deposition based on pig model

Publié en ligne: 29 Oct 2022
Volume & Edition: Volume 22 (2022) - Edition 4 (October 2022)
Pages: 1211 - 1224
Reçu: 17 Dec 2021
Accepté: 08 Mar 2022
Détails du magazine
Première parution
25 Nov 2011
4 fois par an

Amodio N., Raimondi L., Juli G., Stamato M.A., Caracciolo D., Tagliaferri P., Tassone P. (2018). MALAT1: A druggable long non-coding RNA for targeted anti-cancer approaches. J. Hematol. Oncol., 11: 1–19.10.1186/s13045-018-0606-4 Search in Google Scholar

Böhmdorfer G., Wierzbicki A.T. (2015). Control of chromatin structure by long noncoding RNA. Trends Cell. Biol., 25: 623–632.10.1016/j.tcb.2015.07.002 Search in Google Scholar

Carter S., Miard S., Boivin L., Sallé-Lefort S., Picard F. (2018). Loss of Malat1 does not modify age- or diet-induced adipose tissue accretion and insulin resistance in mice. PLoS One, 13.10.1371/journal.pone.0196603594498729746487 Search in Google Scholar

Carvalho F.P. (2017). Pesticides, environment, and food safety. Food Energ. Secur., 6: 48–60.10.1002/fes3.108 Search in Google Scholar

Cesana M., Cacchiarelli D., Legnini I., Santini T., Sthandier O., Chinappi M., Tramontano A., Bozzoni I. (2011). A long non-coding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 147: 358–369.10.1016/j.cell.2011.09.028 Search in Google Scholar

Chen H., Mo D., Li M, Zhang Y., Chen L., Zhang X., Li M., Zhou X., Chen Y. (2014). MiR-709 inhibits 3T3-L1 cell differentiation by targeting GSK3β of Wnt/β-catenin signaling. Cell. Signal., 26: 2583–2589.10.1016/j.cellsig.2014.07.017 Search in Google Scholar

Cheng L., Nan C., Kang L., Zhang N., Liu S., Chen H., Hong C., Chen Y., Liang Z., Liu X. (2020). Whole blood transcriptomic investigation identifies long non-coding RNAs as regulators in sepsis. J. Transl. Med., 18: 217.10.1186/s12967-020-02372-2 Search in Google Scholar

Chessler S.D., Fujimoto W.Y., Shofer J.B., Boyko E.J., Weigle D.S. (1998). Increased plasma leptin levels are associated with fat accumulation in Japanese Americans. Diabetes, 47: 239–243.10.2337/diabetes.47.2.239 Search in Google Scholar

Deming Y., Li Z., Kapoor M., Harari O., Del -Aguila J.L., Black K., Carrell D., Cai Y., Fernandez M.V., Budde J., Ma S., Saef B., Howells B., Huang K. lin, Bertelsen S., Fagan A.M., Holtzman D.M., Morris J.C., Kim S., Saykin A.J., De Jager P.L., Albert M., Moghekar A., O’Brien R., Riemenschneider M., Petersen R.C., Blennow K., Zetterberg H., Minthon L., Van Deerlin V.M., Lee V.M.Y., Shaw L.M., Trojanowski J.Q., Schellenberg G., Haines J.L., Mayeux R., Pericak-Vance M.A., Farrer L.A., Peskind E.R., Li G., Di Narzo A.F., Kauwe J.S.K., Goate A.M., Cruchaga C. (2017). Genome-wide association study identifies four novel loci associated with Alzheimer’s endophenotypes and disease modifiers. Acta Neuropathol., 133: 839–856.10.1007/s00401-017-1685-y Search in Google Scholar

Diederichs S. (2014). The four dimensions of non-coding RNA conservation. Trends Genet., 30: 121–123.10.1016/j.tig.2014.01.004 Search in Google Scholar

Du J., Xu Y., Zhang P., Zhao X., Gan M., Li Q., Ma J., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p affects adipocytes proliferation, differentiation and fatty acid composition of porcine intramuscular fat. Int. J. Mol. Sci., 19: 501.10.3390/ijms19020501 Search in Google Scholar

Ebrahimi R., Toolabi K., Jannat Ali Pour N., Mohassel Azadi S., Bahiraee A., Zamani-Garmsiri F., Emamgholipour S. (2020). Adipose tissue gene expression of long non-coding RNAs; MALAT1, TUG1 in obesity: Is it associated with metabolic profile and lipid homeostasis-related genes expression? Diabetol. Metab. Syndr., 12: 36.10.1186/s13098-020-00544-0 Search in Google Scholar

Eißmann M., Gutschner T., Hämmerle M., Günther S., Caudron -Herger M., Groß M., Schirmacher P., Rippe K., Braun T., Zörnig M., Diederichs S. (2012). Loss of the abundant nuclear non-coding RNA MALAT1 is compatible with life and development. RNA Biol., 9: 1076–1087.10.4161/rna.21089 Search in Google Scholar

Foote A.P., Hales K.E., Kuehn L.A., Keisler D.H., King D.A., Shackelford S.D., Wheeler T.L., Freetly H.C. (2015). Relationship of leptin concentrations with feed intake, growth, and efficiency in finishing beef steers. J. Anim. Sci., 93: 4401–4407.10.2527/jas.2015-9339 Search in Google Scholar

Goyenechea E., Crujeiras A.B., Abete I., Martínez J.A. (2009). Expression of two inflammation-related genes (RIPK3 and RNF216) in mononuclear cells is associated with weight-loss regain in obese subjects. J. Nutrigenet. Nutrigenom, 2: 78–84.10.1159/000210452 Search in Google Scholar

Gutschner T., Hämmerle M., Eißmann M., Hsu J., Kim Y., Hung G., Revenko, A., Arun G., Stentrup M., Groß M., Zörnig M., MacLeod A.R., Spector D.L., Diederichs S. (2013). The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res., 73: 1180–1189.10.1158/0008-5472.CAN-12-2850 Search in Google Scholar

Hou L., Shi J., Cao L., Xu G., Hu C., Wang C. (2017). Pig has no uncoupling protein 1. Biochem. Biophys. Res. Commun., 487: 795–800.10.1016/j.bbrc.2017.04.118 Search in Google Scholar

Iacomino G., Siani A. (2017). Role of microRNAs in obesity and obesity-related diseases. Genes Nutr., 12.10.1186/s12263-017-0577-z561346728974990 Search in Google Scholar

Ji P., Diederichs S., Wang W., Böing S., Metzger R., Schneider P.M., Tidow N., Brandt B., Buerger H., Bulk E., Thomas M., Berdel W.E., Serve H., Müller-Tidow C. (2003). MALAT-1, a novel noncoding RNA, and thymosin β4 predict metastasis and survival in early-stage non-small cell lung cancer. Oncogene, 22: 8031–8041.10.1038/sj.onc.1206928 Search in Google Scholar

Jia P., Wu N., Jia D., Sun Y. (2019). Downregulation of MALAT1 alleviates saturated fatty acid-induced myocardial inflammatory injury via the miR-26a/HMGB1/TLR4/NF-κB axis. Diabetes Metab. Syndr. Obes., Targets Ther., 12: 655–665.10.2147/DMSO.S203151 Search in Google Scholar

Johnson R., Guigó R. (2014). The RIDL hypothesis: Transposable elements as functional domains of long noncoding RNAs. RNA, 20: 959–976.10.1261/rna.044560.114 Search in Google Scholar

Joshi H., Vastrad B.M., Joshi N. (2020). Distinct molecular mechanisms analysis of obesity based on gene expression profiles. Res. Sq., doi: 10.21203/rs.3.rs-95029/v110.21203/rs.3.rs-95029/v1 Search in Google Scholar

Kim J., Piao H.L., Kim B.J., Yao F., Han Z., Wang Y., Xiao Z., Siverly A.N., Lawhon S.E., Ton B.N., Lee H., Zhou Z., Gan B., Nakagawa S., Ellis M.J., Liang H., Hung M.C., You M.J., Su, Y., Ma L. (2018). Long noncoding RNA MALAT1 suppresses breast cancer metastasis. Nat. Genet., 50: 1705–1715.10.1038/s41588-018-0252-3 Search in Google Scholar

Kurył J., Kapelański W., Pierzchała M., Bocian M., Grajewska S. (2003). A relationship between genotypes at the GH and LEP loci and carcass meat and fat deposition in pigs. Anim. Sci. Pap. Rep., 21: 15–26. Search in Google Scholar

Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770. Search in Google Scholar

Liu X., Li D., Zhang D., Yin D., Zhao Y., Ji C., Zhao X., Li X., He Q., Chen R., Hu S., Zhu L. (2018). A novel antisense long noncoding RNA, TWISTED LEAF, maintains leaf blade flattening by regulating its associated sense R2R3-MYB gene in rice. New Phytol., 218: 774–788.10.1111/nph.15023 Search in Google Scholar

Liu L., Tan L., Yao J., Yang L. (2020). Long non-coding RNA MALAT1 regulates cholesterol accumulation in ox-LDL-induced macrophages via the microRNA-17-5p/ABCA1 axis. Mol. Med. Rep., 21: 1761–1770.10.3892/mmr.2020.10987 Search in Google Scholar

Love M.I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol., 15.10.1186/s13059-014-0550-8430204925516281 Search in Google Scholar

Mann M., Wright P.R., Backofen R. (2017). IntaRNA 2.0: Enhanced and customizable prediction of RNA-RNA interactions. Nucleic Acids Res., 45: W435–W439.10.1093/nar/gkx279 Search in Google Scholar

Nielsen K.L., Hartvigsen M.L., Hedemann M.S., Lærke H.N., Hermansen K., Bach Knudsen K.E. (2014). Similar metabolic responses in pigs and humans to breads with different contents and compositions of dietary fibers: a metabolomics study. Am. J. Clin. Nutr., 99: 941–949.10.3945/ajcn.113.074724 Search in Google Scholar

Ørom U.A., Derrien T., Beringer M., Gumireddy K., Gardini A., Bussotti G., Lai F., Zytnicki M., Notredame C., Huang Q., Guigo R., Shiekhattar R. (2010). Long non-coding RNAs with enhancer like function in human cells. Cell, 143: 46–58.10.1016/j.cell.2010.09.001 Search in Google Scholar

Perdomo G., Kim D.H., Zhang T., Qu S., Thomas E.A., Toledo F.G.S., Slusher S., Fan Y., Kelley D.E., Dong H.H. (2010). A role of apolipoprotein D in triglyceride metabolism. J. Lipid Res., 51: 1298–1311.10.1194/jlr.M001206 Search in Google Scholar

Pfaffl M.W., Tichopad A., Prgomet C., Neuvians T.P. (2004). Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper – Excel-based tool using pair-wise correlations. Biotechnol. Lett., 26: 509–515.10.1023/B:BILE.0000019559.84305.47 Search in Google Scholar

Piórkowska K., Ropka-Molik K., Eckert R., Rózycki M. (2013). The expression pattern of proteolytic enzymes of cathepsin family in two important porcine skeletal muscles. Livest. Sci., 157: 427–434.10.1016/j.livsci.2013.09.002 Search in Google Scholar

Ropka-Molik K., Pawlina-Tyszko K., Żukowski K., Tyra M., Derebecka N., Wesoły J., Szmatoła T., Piórkowska K., (2020). Identification of molecular mechanisms related to pig fatness at the transcriptome and miRNAome levels. Genes (Basel)., 11: 600.10.3390/genes11060600 Search in Google Scholar

Scott K.A., Melhorn S.J., Sakai R.R. (2012). Effects of chronic social stress on obesity. Curr. Obes. Rep., 1: 16–25.10.1007/s13679-011-0006-3 Search in Google Scholar

Scoville D.W., Kang H.S., Jetten A.M. (2017). GLIS1-3: Emerging roles in reprogramming, stem and progenitor cell differentiation and maintenance. Stem Cell Investig., 4.10.21037/sci.2017.09.01563901129057252 Search in Google Scholar

Sindhu S., Akhter N., Kochumon S., Thomas R., Wilson A., Shenouda S., Tuomilehto J., Ahmad R. (2018). Increased expression of the innate immune receptor TLR10 in obesity and type-2 diabetes: Association with ROS-mediated oxidative stress. Cell. Physiol. Biochem., 45: 572–590.10.1159/000487034 Search in Google Scholar

Singh D.K., Prasanth K. V. (2013). Functional insights into the role of nuclear-retained long noncoding RNAs in gene expression control in mammalian cells. Chromosom. Res., 21: 695–711.10.1007/s10577-013-9391-7 Search in Google Scholar

Singh U.P., Singh N.P., Murphy E.A., Singh S.K., Price R.L., Nagarkatti M., Nagarkatti P.S. (2018). Adipose T cell microRNAs influence the T cell expansion, microbiome and macrophage function during obesity. J. Immunol., 200.10.4049/jimmunol.200.Supp.108.2 Search in Google Scholar

Skorobogatko Y., Dragan M., Cordon C., Reilly S.M., Hung C.W., Xia W., Zhao P., Wallace M., Lackey D.E., Chen X.W., Osborn O., Bogner -Strauss J.G., Theodorescu D., Metallo C.M., Olefsky J.M., Saltiel A.R., (2018). RalA controls glucose homeostasis by regulating glucose uptake in brown fat. Proc. Natl. Acad. Sci. U. S. A., 115: 7819–7824.10.1073/pnas.1801050115 Search in Google Scholar

Song W., Chen Y.P., Huang R., Chen K., Pan P.L., Li J., Yang Y., Shang H.F. (2012). GLIS1 rs797906: An increased risk factor for late-onset Parkinson’s disease in the han Chinese population. Eur. Neurol., 68: 89–92.10.1159/000337955 Search in Google Scholar

Song Z., Cooper D.K.C., Cai Z., Mou L. (2018). Expression and regulation profile of mature microRNA in the pig: Relevance to xenotransplantation. Biomed Res. Int. 2018.10.1155/2018/2983908588440329750148 Search in Google Scholar

Stachowiak M., Szczerbal I., Switonski M. (2016). Genetics of adiposity in large animal models for human obesity – studies on pigs and dogs. Prog. Mol. Biol. Transl. Sci., 140: 233–270.10.1016/bs.pmbts.2016.01.001 Search in Google Scholar

St. Laurent G., Wahlestedt C., Kapranov P. (2015). The landscape of long non-coding RNA classification. Trends Genet., 31: 239–251.10.1016/j.tig.2015.03.007 Search in Google Scholar

Sun L., Lin J.D. (2019). Function and mechanism of long non-coding RNAs in adipocyte biology. Diabetes, 68: 887–896.10.2337/dbi18-0009 Search in Google Scholar

Sun Y., Chen X., Qin J., Liu S., Zhao R., Yu T., Chu G., Yang G., Pang W. (2018). Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fattype and lean-type pigs. J. Agric. Food Chem., 66: 12122–12130.10.1021/acs.jafc.8b04243 Search in Google Scholar

Sun Y., Cai R., Wang Y., Zhao R., Qin J., Pang W. (2020). A newly identified LNcRNA LncIMF4 controls adipogenesis of porcine intramuscular preadipocyte through attenuating autophagy to inhibit lipolysis. Animals, 10.10.3390/ani10060926734152832466602 Search in Google Scholar

Takahashi, K., Sakurai, N., Emura, N., Hashizume, T., Sawai, K., 2015. Effects of downregulating GLIS1 transcript on preimplantation development and gene expression of bovine embryos. J. Reprod. Dev., 61: 369–374.10.1262/jrd.2015-029462314126074126 Search in Google Scholar

Tosic M., Allen A., Willmann D., Lepper C., Kim J., Duteil D., Schüle R. (2018). Lsd1 regulates skeletal muscle regeneration and directs the fate of satellite cells. Nat. Commun., 9.10.1038/s41467-017-02740-5578554029371665 Search in Google Scholar

Tripathi V., Ellis J.D., Shen Z., Song D.Y., Pan Q., Watt A.T., Freier S.M., Bennett C.F., Sharma A., Bubulya P.A., Blencowe B.J., Prasanth S.G., Prasanth K. V. (2010). The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol. Cell, 39: 925–938.10.1016/j.molcel.2010.08.011 Search in Google Scholar

Xia S.F., Duan X.M., Cheng X.R., Chen L.M., Kang Y.J., Wang P., Tang X., Shi Y.H., Le G.W. (2017). Role of miR-383 and miR-146b in different propensities to obesity in male mice. J. Endocrinol., 234: 201–216.10.1530/JOE-17-0044 Search in Google Scholar

Xu Y., Du J., Zhang P., Zhao X., Li Q., Jiang A., Jiang D., Tang G., Jiang Y., Wang J., Li X., Zhang S., Zhu L. (2018). MicroRNA-125a-5p Mediates 3T3-L1 Preadipocyte Proliferation and Differentiation. Molecules, 23: 317.10.3390/molecules23020317 Search in Google Scholar

Yan C., Chen J., Chen N. (2016). Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci. Rep., 6: 1–11.10.1038/srep22640 Search in Google Scholar

Yu L., Tai L., Zhang L., Chu Y., Li Y., Zhou L. (2017). Comparative analyses of long non-coding RNA in lean and obese pig. Oncotarget, 8: 41440–41450.10.18632/oncotarget.18269 Search in Google Scholar

Zhang B., Arun G., Mao Y.S., Lazar Z., Hung G., Bhattacharjee G., Xiao X., Booth C.J., Wu J., Zhang C., Spector D.L. (2012). The lncRNA malat1 is dispensable for mouse development but its transcription plays a cis-regulatory role in the adult. Cell Rep., 2: 111–123.10.1016/j.celrep.2012.06.003 Search in Google Scholar

Zhang X., Wang W., Zhu W., Dong J., Cheng Y., Yin Z., Shen F. (2019a). Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int. J. Mol. Sci., 20.10.3390/ijms20225573688808331717266 Search in Google Scholar

Zhang X., Zhou Y., Chen S., Li W., Chen W., Gu W. (2019 b). LncRNA MACC1-AS1 sponges multiple miRNAs and RNA-binding protein PTBP1. Oncogenesis, 8: 1–13.10.1038/s41389-019-0182-7690468031822653 Search in Google Scholar

Zhu Y.-L., Chen T., Xiong J.-L., Wu D., Xi Q.-Y., Luo J.-Y., Sun J.-J., Zhang Y.-L. (2018). miR-146b Inhibits Glucose Consumption by targeting IRS1 gene in porcine primary adipocytes. Int. J. Mol. Sci., 19: 783.10.3390/ijms19030783 Search in Google Scholar

Articles recommandés par Trend MD