Accès libre

The multi-enzymes and probiotics mixture improves the growth performance, digestibility, intestinal health, and immune response of Siberian sturgeon (Acipenser baerii)

À propos de cet article

Citez

Abdel-Latif H.M.R., Abdel-Tawwab M., Dawood M.A.O., Menanteau-Ledouble S., El-Matbouli M. (2020). Benefits of dietary butyric acid, sodium butyrate, and their protected forms in aquafeeds: A Review. Rev. Fish. Sci. Aquac. 28: 421–448.10.1080/23308249.2020.1758899 Search in Google Scholar

Adawi D., Ahrné S., Molin G. (2001). Effects of different probiotic strains of Lactobacillus and Bifidobacterium on bacterial translocation and liver injury in an acute liver injury model. Int. J. Food Microbiol., 70: 213–220.10.1016/S0168-1605(01)00550-5 Search in Google Scholar

Adel M., Dawood M.A. (2021). Probiotics application: implications for sustainable aquaculture. In: Probiotic bacteria and postbiotic Metabolites: role in animal and human health, N. Mojgani, M. Dadar, (eds). Microorganisms for Sustainability Series 2, Springer Publishing, NY, USA, pp. 191–219.10.1007/978-981-16-0223-8_8 Search in Google Scholar

Adeola O., Cowieson A.J. (2011). Board-invited review: opportunities and challenges in using exogenous enzymes to improve nonruminant animal production. Anim. Sci. J., 89: 3189–3218.10.2527/jas.2010-3715 Search in Google Scholar

Akbari H., Shekrabi S.P.H., Soltani M., Mehrgan M.S. (2021). Effects of potential probiotic Enterococcus casseliflavus (EC-001) on growth performance, immunity, and resistance to Aeromonas hydrophila infection in common carp (Cyprinus carpio). Prob. Antimicrob. Proteins., 13: 1316–1325.10.1007/s12602-021-09771-x Search in Google Scholar

AOAC (1995). Association of Official Analytical Chemists. Official Methods of Analysis 16th edition. AOAC, Arlington, Virginia, pp. 532. Search in Google Scholar

Assan D., Kuebutornye F.K.A., Hlordzi V., Chen H., Mraz J., Mustapha U.F., Abarike E.D. (2022). Effects of probiotics on digestive enzymes of fish (finfish and shellfish); status and prospects: a mini-review. Comp. Biochem. Physiol. – B Biochem. Mol., 257: 110653.10.1016/j.cbpb.2021.110653 Search in Google Scholar

Barham W.T., Smit G.L., Schoonbee H.J. (1980). The haematological assessment of bacterial infection in rainbow trout, Salmo gairdneri Richardson. J. Fish Biol., 17: 275–281.10.1111/j.1095-8649.1980.tb02761.x Search in Google Scholar

Campbell T. (2004). Hematology of lower vertebrates. American College of Veterinary Pathologists and American Society for Veterinary Clinical Pathology, Middleton WI, USA, pp. 1104–1108. Search in Google Scholar

Dai B., Hou Y., Hou Y., Qian L. (2019). Effects of multienzyme complex and probiotic supplementation on the growth performance, digestive enzyme activity and gut microorganisms composition of snakehead (Channa argus). Aquacult. Nutr., 25: 15–25.10.1111/anu.12825 Search in Google Scholar

Dawood M.A.O. (2021). Nutritional immunity of fish intestines: important insights for sustainable aquaculture. Rev. Aquacult., 13: 642–663.10.1111/raq.12492 Search in Google Scholar

Dawood M.A.O., Koshio S. (2020). Application of fermentation strategy in aquafeed for sustainable aquaculture. Rev. Aquacult., 12: 987–1002.10.1111/raq.12368 Search in Google Scholar

Dawood M.A.O., Koshio S., Ishikawa M., El-Sabagh M., Yokoyama S., Wang W.-L., Yukun Z., Olivier A. (2017). Physiological response, blood chemistry profile and mucus secretion of red sea bream (Pagrus major) fed diets supplemented with Lactobacillus rhamnosus under low salinity stress. Fish Physiol. Biochem., 43: 179–192.10.1007/s10695-016-0277-4 Search in Google Scholar

Dawood M.A.O., Abo-Al-Ela H.G., Hasan M.T. (2020). Modulation of transcriptomic profile in aquatic animals: Probiotics, prebiotics and synbiotics scenarios. Fish Shellfish Immunol., 97: 268–282.10.1016/j.fsi.2019.12.054 Search in Google Scholar

Dawood M.A.O., Noreldin A.E., Sewilam H. (2021). Long term salinity disrupts the hepatic function, intestinal health, and gills antioxidative status in Nile tilapia stressed with hypoxia. Ecotoxicol. Environ. Saf., 220: 112412.10.1016/j.ecoenv.2021.112412 Search in Google Scholar

El-Saadony M.T., Alagawany M., Patra A.K., Kar I., Tiwari R., Dawood M.A.O., Dhama K., Abdel-Latif H.M.R. (2021). The functionality of probiotics in aquaculture: An overview. Fish Shellfish Immunol., 117: 36–52.10.1016/j.fsi.2021.07.007 Search in Google Scholar

Ellis A.E. (1990). Lysozyme assays. In: Techniques in fish immunology, J.S. Stolen, T.C. Fletcher, D.P. Anderson, B.S. Roberson, W.B. Van Muiswinkel (eds). USA, SOS Publ., Fair Haven, NJ, pp. 101–103. Search in Google Scholar

Falahatkar B. (2018). Nutritional requirements of the Siberian sturgeon: an updated synthesis. In: The Siberian sturgeon (Acipenser baerii, Brandt, 1869) Vol. 1 – Biology, P. Williot, G. Nonnotte, D. Vizziano-Cantonnet, M. Chebanov (eds). Springer International Publishing, Cham, pp. 207–228.10.1007/978-3-319-61664-3_11 Search in Google Scholar

FAO (2020). The State of World Fisheries and Aquaculture. Sustainability in Action, Rome. Search in Google Scholar

Firmino J.P., Fernández-Alacid L., Vallejos-Vidal E., Salomón R., Sanahuja I., Tort L., Ibarz A., Reyes-López F.E., Gisbert E. (2021). Carvacrol, thymol, and garlic essential oil promote skin innate immunity in gilthead seabream (Sparus aurata) through the multifactorial modulation of the secretory pathway and enhancement of mucus protective capacity. Front. Immunol., 12.10.3389/fimmu.2021.633621799426933777020 Search in Google Scholar

Galappaththi E.K., Ichien S.T., Hyman A.A., Aubrac C.J., Ford J.D. (2020). Climate change adaptation in aquaculture. Rev. Aquacult., 12: 2160–2176.10.1111/raq.12427 Search in Google Scholar

Ghomi M.R., Shahriari R., Langroudi H.F., Nikoo M., von Elert E. (2012). Effects of exogenous dietary enzyme on growth, body composition, and fatty acid profiles of cultured great sturgeon Huso huso fingerlings. Aquacult. Int., 20: 249–254.10.1007/s10499-011-9453-9 Search in Google Scholar

Hassaan M.S., Soltan M.A., Ghonemy M.M.R. (2014). Effect of synbiotics between Bacillus licheniformis and yeast extract on growth, hematological and biochemical indices of the Nile tilapia (Oreochromis niloticus). Egypt. J. Aquat. Res., 40: 199–208.10.1016/j.ejar.2014.04.001 Search in Google Scholar

Hassaan M.S., Mohammady E.Y., Soaudy M.R., Elashry M.A., Moustafa M.M.A., Wassel M.A., El-Garhy H.A.S., El-Haroun E.R., Elsayed H.E. (2021). Synergistic effects of Bacillus pumilus and exogenous protease on Nile tilapia (Oreochromis niloticus) growth, gut microbes, immune response and gene expression fed plant protein diet. Anim. Feed Sci. Technol., 275: 114892.10.1016/j.anifeedsci.2021.114892 Search in Google Scholar

Hedayati S.A., Sheikh Veisi R., Hosseini Shekarabi S.P., Shahbazi Naserabad S., Bagheri D., Ghafarifarsani H. (2021). Effect of dietary Lactobacillus casei on physiometabolic responses and liver histopathology in common carp (Cyprinus carpio) after exposure to iron oxide nanoparticles. Biol. Trace Elem. Res., 1–9.10.1007/s12011-021-02906-9 Search in Google Scholar

Hosseini Shekarabi S.P., Shamsaie Mehrgan M., Banavreh A. (2021). Feasibility of superworm, Zophobas morio, meal as a partial fishmeal replacer in fingerling rainbow trout, Oncorhynchus mykiss, diet: growth performance, amino acid profile, proteolytic enzymes activity and pigmentation. Aquacult. Nutr., 27: 1077–1088.10.1111/anu.13249 Search in Google Scholar

Huang Z., Li Z., Xu A., Zheng D., Ye Y., Wang Z. (2020). Effects of exogenous multienzyme complex supplementation in diets on growth performance, digestive enzyme activity and non-specific immunity of the Japanese seabass, Lateolabrax japonicus. Aquacult. Nutr., 26: 306–315.10.1111/anu.12991 Search in Google Scholar

Kong Y., Li M., Chu G., Liu H., Shan X., Wang G., Han G. (2021). The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture, 531: 735852.10.1016/j.aquaculture.2020.735852 Search in Google Scholar

Lowry O.H. (1951). Protein determination with the folin phenol reagent. J. Biol. Chem., 193: 265–275.10.1016/S0021-9258(19)52451-6 Search in Google Scholar

Luo J., Li Y., Jin M., Zhu T., Li C., Zhou Q. (2020). Effects of dietary exogenous xylanase supplementation on growth performance, intestinal health, and carbohydrate metabolism of juvenile large yellow croaker, Larimichthys crocea. Fish Physiol. Bioch., 46: 1093–1110.10.1007/s10695-020-00774-z Search in Google Scholar

Maas R.M., Verdegem M.C.J., Lee C.-N., Schrama J.W. (2021 a). Effects and interactions between phytase, xylanase and β-glucanase on growth performance and nutrient digestibility in Nile tilapia. Anim. Feed Sci. Technol., 271: 114767.10.1016/j.anifeedsci.2020.114767 Search in Google Scholar

Maas R.M., Verdegem M.C.J., Debnath S., Marchal L., Schrama J.W. (2021 b). Effect of enzymes (phytase and xylanase), probiotics (B. amyloliquefaciens) and their combination on growth performance and nutrient utilisation in Nile tilapia. Aquaculture, 533: 736226.10.1016/j.aquaculture.2020.736226 Search in Google Scholar

Maas R.M., Deng Y., Dersjant-Li Y., Petit J., Verdegem M.C.J., Schrama J.W., Kokou F. (2021 c). Exogenous enzymes and probiotics alter digestion kinetics, volatile fatty acid content and microbial interactions in the gut of Nile tilapia. Sci. Rep., 11: 8221.10.1038/s41598-021-87408-3805005633859242 Search in Google Scholar

Melo-Bolívar J.F., Ruiz Pardo R.Y., Hume M.E., Villamil Díaz L.M. (2021). Multistrain probiotics use in main commercially cultured freshwater fish: a systematic review of evidence. Rev. Aquacult., 1–23.10.1111/raq.12543 Search in Google Scholar

Mohammad E., Mehran T. (2010). Effects of dietary inclusion of guar meal supplemented by β-mannanase on performance of laying hens, egg quality characteristics and diacritical counts of white blood cells. Am. J. Anim. Vet., 5.10.3844/ajavsp.2010.237.243 Search in Google Scholar

Monier M.N. (2020). Efficacy of dietary exogenous enzyme supplementation on growth performance, antioxidant activity, and digestive enzymes of common carp (Cyprinus carpio) fry. Fish Physiol. Biochem., 46: 713–723.10.1007/s10695-019-00745-z Search in Google Scholar

Mori M., Ito T., Washio R., Shibasaki Y., Namba A., Yabu T., Iwazaki D., Wada N., Anzai H., Shiba H., Nakanishi T., Mano N. (2021). Enhancement of immune proteins expression in skin mucus of Japanese flounder Paralichthys olivaceus upon feeding a diet supplemented with high concentration of ascorbic acid. Fish Shellfish Immunol., 114: 20–27.10.1016/j.fsi.2021.04.009 Search in Google Scholar

Nikiforov-Nikishin A., Nikiforov-Nikishin D., Kochetkov N., Smorodinskaya S., Klimov V. (2021). The influence of probiotics of different microbiological composition on histology of the gastrointestinal tract of juvenile Oncorhynchus mykiss. Microsc. Res. Tech., https://doi.org/10.1002/jemt.2392710.1002/jemt.2392734494700 Search in Google Scholar

Randazzo B., Zarantoniello M., Gioacchini G., Cardinaletti G., Belloni A., Giorgini E., Faccenda F., Cerri R., Tibaldi E., Olivotto I. (2021). Physiological response of rainbow trout (Oncorhynchus mykiss) to graded levels of Hermetia illucens or poultry byproduct meals as single or combined substitute ingredients to dietary plant proteins. Aquaculture, 538: 736550.10.1016/j.aquaculture.2021.736550 Search in Google Scholar

Roberts R.J. (2012). Fish Pathology. John Wiley & Sons.10.1002/9781118222942 Search in Google Scholar

Sagada G., Gray N., Wang L., Xu B., Zheng L., Zhong Z., Ullah S., Tegomo A.F., Shao Q. (2021). Effect of dietary inactivated Lactobacillus plantarum on growth performance, antioxidative capacity, and intestinal integrity of black sea bream (Acanthopagrus schlegelii) fingerlings. Aquaculture, 535: 736370.10.1016/j.aquaculture.2021.736370 Search in Google Scholar

Sakamoto K., Hirose H., Onizuka A., Hayashi M., Futamura N., Kawamura Y., Ezaki T. (2000). Quantitative study of changes in intestinal morphology and mucus gel on total parenteral nutrition in rats. J. Surg. Res., 94: 99–106.10.1006/jsre.2000.5937 Search in Google Scholar

Siwicki A.K., Anderson D.P. (1993). Nonspecific defense mechanisms assay in fish. II. Potential killing activity of neutrophils and macrophages, lysozyme activity in serum and organs and total immunoglobulin (Ig) level in serum. In: Fish disease diagnosis and preventions methods, A.K. Siwicki, D.P. Anderson, J. Waluga (eds). Wyd. Inst. Ryb. Strodlad., pp. 105–111. Search in Google Scholar

Subramanian S., MacKinnon S.L., Ross N.W. (2007). A comparative study on innate immune parameters in the epidermal mucus of various fish species. Comp. Biochem. Physiol. - B Biochem. Mol., 148: 256–263.10.1016/j.cbpb.2007.06.003 Search in Google Scholar

Tachibana L., Telli G.S., de Carla Dias D., Gonçalves G.S., Ishikawa C.M., Cavalcante R.B., Natori M.M., Hamed S.B., Ranzani-Paiva M.J.T. (2020). Effect of feeding strategy of probiotic Enterococcus faecium on growth performance, hematologic, biochemical parameters and non-specific immune response of Nile tilapia. Aquacult. Rep., 16: 100277–100277.10.1016/j.aqrep.2020.100277 Search in Google Scholar

Thrall M.A., Weiser G., Allison R.W., Campbell T.W. (2012). Veterinary hematology and clinical chemistry. John Wiley & Sons. Search in Google Scholar

Tidwell J.H., Coyle S.D., Rossi W., Rucker K. (2021). Evaluation of brewers spent grains with different levels of exogenous enzymes on the production performance and body composition of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). J. Appl. Aquac., 1–16.10.1080/10454438.2021.1956669 Search in Google Scholar

Ushakova N.A., Pravdin V.G., Kravtsova L.Z., Ponomarev S.V., Gridina T.S., Ponomareva E.N., Rudoy D.V., Chikindas M.L. (2021). Complex bioactive supplements for aquaculture – evolutionary development of probiotic concepts. Prob. Antimicrob. Prot., 13: 1696–1708.10.1007/s12602-021-09835-y Search in Google Scholar

Velázquez-De Lucio B.S., Hernández-Domínguez E.M., Villa-García M., Díaz-Godínez G., Mandujano-Gonzalez V., Mendoza-Mendoza B., Álvarez-Cervantes J. (2021). Exogenous enzymes as zootechnical additives in animal feed: a review. Catalysts, 11.10.3390/catal11070851 Search in Google Scholar

Williams B.A., Verstegen M.W.A., Tamminga S. (2001). Fermentation in the large intestine of single-stomached animals and its relationship to animal health. Nutr. Res. Rev., 14: 207–228.10.1079/NRR200127 Search in Google Scholar

Wuertz S., Schroeder A., Wanka K.M. (2021). Probiotics in fish nutrition – long-standing household remedy or native nutraceuticals? Water, 13.10.3390/w13101348 Search in Google Scholar

Yin Z., Liu Q., Liu Y., Gao S., He Y., Yao C., Huang W., Gong Y., Mai K., Ai Q. (2021). Early life intervention using probiotic clostridium butyricum improves intestinal development, immune response, and gut microbiota in large yellow croaker (Larimichthys crocea) larvae. Front Immunol., 12: 640767.10.3389/fimmu.2021.640767 Search in Google Scholar

Yu G., Liu C., Zheng Y., Chen Y., Li D., Qin W. (2021). Meta-analysis in the production chain of aquaculture: a review. Inf. Proc. Agricult., https://doi.org/10.1016/j.inpa.2021.04.00210.1016/j.inpa.2021.04.002 Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine