1. bookVolume 22 (2022): Edition 3 (July 2022)
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
access type Accès libre

Influence of nitrate supplementation on in-vitro methane emission, milk production, ruminal fermentation, and microbial methanotrophs in dairy cows fed at two forage levels

Publié en ligne: 19 Jul 2022
Volume & Edition: Volume 22 (2022) - Edition 3 (July 2022)
Pages: 1015 - 1026
Reçu: 11 Jan 2021
Accepté: 19 Oct 2021
Détails du magazine
License
Format
Magazine
eISSN
2300-8733
Première parution
25 Nov 2011
Périodicité
4 fois par an
Langues
Anglais
Abstract

Modifying the chemical composition of a diet can be a good strategy for reducing methane emission in the rumen. However, this strategy can have adverse effects on the ruminal microbial flora. The aim of our study was to reduce methane without disturbing ruminal function by stimulating the growth and propagation of methanotrophs. In this study, we randomly divided twenty multiparous Holstein dairy cows into 4 groups in a 2×2 factorial design with two forage levels (40% and 60%) and two nitrate supplementation levels (3.5% and zero). We examined the effect of experimental diets on cow performance, ruminal fermentation, blood metabolites and changes of ruminal microbial flora throughout the experimental period (45-day). Additionally, in vitro methane emission was evaluated. Animals fed diet with 60% forage had greater dry matter intake (DMI) and milk fat content, but lower lactose and milk urea content compared with those fed 40% forage diet. Moreover, nitrate supplementation had no significant effect on DMI and milk yield. Furthermore, the interactions showed that nitrate reduces DMI and milk fat independently of forage levels. Our findings showed that nitrate can increase ammonia concentration, pH, nitrite, and acetate while reducing the total volatile fatty acids concentration, propionate, and butyrate in the rumen. With increasing nitrate, methane emission was considerably decreased possibly due to the stimulated growth of Fibrobacteria, Proteobacteria, type II Methanotrophs, and Methanoperedense nitroreducens, especially with high forage level. Overall, nitrate supplementation could potentially increase methane oxidizing microorganisms without adversely affecting cattle performance.

Keywords

Abhilash K.P.P. (2019). Methemoglobinemia: When to suspect and how to treat. Curr. Med. Iss., 17: 125. Search in Google Scholar

Agarwal N., Kamra D., Chatterjee P., Kumar R., Chaudhary L. (2008). In vitro methanogenesis, microbial profile and fermentation of green forages with buffalo rumen liquor as influenced by 2-bromoethanesulphonic acid. Asian-Australas. J. Anim. Sci., 21: 818–823. Search in Google Scholar

Annika V., Jetten M.S.M., Ettwig K.F., Lüke C. (2017). McrA primers for the detection and quantification of the anaerobic archaeal methanotroph ‘Candidatus Methanoperedens nitroreducens’. Appl. Microbiol. Biotechnol., 101: 11. Search in Google Scholar

AOAC (2005). Official method of analysis. 18 ed., Arlington, VA, US. Search in Google Scholar

Bhattarai S., Cassarini C., Lens P. (2019). Physiology and distribution of archaeal methanotrophs that couple anaerobic oxidation of methane with sulfate reduction. Microbiol. Mol. Biol. Rev., 83.10.1128/MMBR.00074-18671046131366606 Search in Google Scholar

Cavanaugh J.E., Neath A.A. (2019). The Akaike information criterion: Background, derivation, properties, application, interpretation, and refinements. Wiley Interdisciplinary Reviews: Computational Statistics, 11: e1460. Search in Google Scholar

Chen D., Tang Q., Huawei S., Aziz ur Rahman M., Wu D., Wan F., Shen W. (2020). Ruminal fermentation parameters and microbial community at phylum level differently influenced by forage types in bulls. Int. J. Agric. Biol., 24: 1025–1032. Search in Google Scholar

Chen H., Luo J., Liu S., Yuan Z., Guo J. (2019). Microbial methane conversion to short-chain fatty acids using various electron acceptors in membrane biofilm reactors. Environ. Sci. Technol., 53: 12846–12855. Search in Google Scholar

Chini V., Foka A., Dimitracopoulos G., Spiliopoulou I. (2007). Absolute and relative real-time PCR in the quantification of tst gene expression among methicillin-resistant Staphylococcus aureus: evaluation by two mathematical models. Lett. Appl. Microbiol., 45: 479–484. Search in Google Scholar

Cho Y.B., Jeong S.H., Chun H., Kim Y.S. (2018). Selective colorimetric detection of dissolved ammonia in water via modified Berthelot’s reaction on porous paper. Sens. Actuat. B: Chem., 256: 167–175. Search in Google Scholar

Clough T.J., Cardenas L.M., Friedl J., Wolf B. (2020). Nitrous oxide emissions from ruminant urine: science and mitigation for intensively managed perennial pastures. Curr. Opin. Environ. Sust., 47: 21–27. Search in Google Scholar

Cui M., Ma A., Qi H., Zhuang X., Zhuang G. (2015). Anaerobic oxidation of methane: an “active” microbial process. Microbiol. Open, 4: 1–11. Search in Google Scholar

Danielsson R., Dicksved J., Sun L., Gonda H., Müller B., Schnürer A., Bertilsson J. (2017). Methane production in dairy cows correlates with rumen methanogenic and bacterial community structure. Front. Microbiol., 8: 226. Search in Google Scholar

Duthie C.-A., Troy S., Hyslop J., Ross D., Roehe R., Rooke J. (2018). The effect of dietary addition of nitrate or increase in lipid concentrations, alone or in combination, on performance and methane emissions of beef cattle. Animal, 12: 280–287. Search in Google Scholar

Feldewert C., Lang K., Brune A. (2020). The hydrogen threshold of obligately methyl-reducing methanogens. FEMS Microbiol. Lett., 367: fnaa137. Search in Google Scholar

Filípek J., Dvořák R. (2009). Determination of the volatile fatty acid content in the rumen liquid: comparison of gas chromatography and capillary isotachophoresis. Acta Vet. Brno, 78: 627–633. Search in Google Scholar

Finn D., Ouwerkerk D., Klieve A. (2012). Methanotrophs from natural ecosystems as biocontrol agents for ruminant methane emissions. Final report in University of Queensland. Project code: B.CCH.1013. Search in Google Scholar

Granja-Salcedo Y.T., Fernandes R.M., Araujo R.C., Kishi L.T., Berchielli T.T., Resende F.D., Berndt A., Siqueira G.R. (2019). Long-term encapsulated nitrate supplementation modulates rumen microbial diversity and rumen fermentation to reduce methane emission in grazing steers. Front. Microbiol., 10: 614. Search in Google Scholar

Guo W.S., Schaefer D.M., Guo X.X., Ren L.P., Meng Q.X. (2009). Use of nitrate-nitrogen as a sole dietary nitrogen source to inhibit ruminal methanogenesis and to improve microbial nitrogen synthesis in vitro. Asian-Australas. J. Anim. Sci., 22: 542–549. Search in Google Scholar

Guyader J., Doreau M., Morgavi D., Gérard C., Loncke C., Martin C. (2016). Long-term effect of linseed plus nitrate fed to dairy cows on enteric methane emission and nitrate and nitrite residuals in milk. Animal, 10: 1173–1181. Search in Google Scholar

Hegarty R., Gerdes R. (1999). Hydrogen production and transfer in the rumen. Rec. Adv. Anim. Nutr. Australia, 12: 37–44. Search in Google Scholar

Hulshof R., Berndt A., Gerrits W., Dijkstra J., Van Zijderveld S., Newbold J., Perdok H. (2012). Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. J. Anim. Sci., 90: 2317–2323. Search in Google Scholar

Johnson K.A., Johnson D.E. (1995). Methane emissions from cattle. J. Anim. Sci., 73: 2483–2492. Search in Google Scholar

Kajikawa H., Valdes C., Hillman K., Wallace R., Newbold C.J. (2003). Methane oxidation and its coupled electron-sink reactions in ruminal fluid. Lett. Appl. Microbiol., 36: 354–357. Search in Google Scholar

Kamalak A., Canbolat O., Gurbuz Y., Ozay O. (2005). Comparison of in vitro gas production technique with in situ nylon bag technique to estimate dry matter degradation. Czech J. Anim. Sci., 50: 8. Search in Google Scholar

Keefe G.P., Ogilvie T.H. (1997). Comparison of oro-rumenal probe and rumenocentesis for prediction of rumen pH in dairy cattle. Proc. Annual Conference. American Association of Bovine Practitioners, pp. 168–169. Search in Google Scholar

Khadem A.A., Sharifi M., Afzalzadeh A., Rezaeian M. (2009). Effects of diets containing alfalfa hay or barley flour mixed alfalfa silage on feeding behavior, productivity, rumen fermentation and blood metabolites in lactating cows. Anim. Sci. J., 80: 403–410. Search in Google Scholar

Kittelmann S., Pinares-Patino C.S., Seedorf H., Kirk M.R., Ganesh S., McEwan J.C., Janssen P.H. (2014). Two different bacterial community types are linked with the low-methane emission trait in sheep. PloS One, 9:e103171. Search in Google Scholar

Klop G., Hatew B., Bannink A., Dijkstra J. (2016). Feeding nitrate and docosahexaenoic acid affects enteric methane production and milk fatty acid composition in lactating dairy cows. J. Dairy Sci., 99: 1161–1172. Search in Google Scholar

Kumar M., Tomar R.S., Lade H., Paul D. (2016). Methylotrophic bacteria in sustainable agriculture. World J. Microbiol. Biotechnol., 32: 1–9. Search in Google Scholar

Latham E.A., Anderson R.C., Pinchak W.E., Nisbet D.J. (2016). Insights on alterations to the rumen ecosystem by nitrate and nitrocompounds. Front. Microbiol., 7: 228. Search in Google Scholar

Lee C., Araujo R., Koenig K., Beauchemin K. (2017). Effects of encapsulated nitrate on growth performance, nitrate toxicity, and enteric methane emissions in beef steers: backgrounding phase. J. Anim. Sci., 95: 3700–3711. Search in Google Scholar

Li Z., Liu N., Cao Y., Jin C., Li F., Cai C., Yao J. (2018). Effects of fumaric acid supplementation on methane production and rumen fermentation in goats fed diets varying in forage and concentrate particle size. J. Anim. Sci. Biotechnol., 9: 1–9. Search in Google Scholar

Lin M., Schaefer D., Guo W., Ren L., Meng Q. (2011). Comparisons of in vitro nitrate reduction, methanogenesis, and fermentation acid profile among rumen bacterial, protozoal and fungal fractions. Asian-Australas. J. Anim. Sci., 24: 471–478. Search in Google Scholar

Liu L., Xu X., Cao Y., Cai C., Cui H., Yao J. (2017). Nitrate decreases methane production also by increasing methane oxidation through stimulating NC10 population in ruminal culture. Amb. Express, 7: 1–7. Search in Google Scholar

Maccarana L., Cattani M., Tagliapietra F., Bailoni L., Schiavon S. (2016). Influence of main dietary chemical constituents on the in vitro gas and methane production in diets for dairy cows. J. Anim. Sci. Biotechnol., 7: 54–61. Search in Google Scholar

MacDonald G., Levison J., Parker B. (2017). On methods for in-well nitrate monitoring using optical sensors. Ground Water Monit. Remed., 37: 60–70. Search in Google Scholar

Mitsumori M., Ajisaka N., Tajima K., Kajikawa H., Kurihara M. (2002). Detection of Proteobacteria from the rumen by PCR using methanotroph-specific primers. Lett. Appl. Microbiol., 35: 251–256. Search in Google Scholar

Naderi N., Ghorbani G., Sadeghi-Sefidmazgi A., Nasrollahi S., Beauchemin K. (2016). Shredded beet pulp substituted for corn silage in diets fed to dairy cows under ambient heat stress: Feed intake, total-tract digestibility, plasma metabolites, and milk production. J. Dairy Sci., 99: 8847–8857. Search in Google Scholar

Olijhoek D., Hellwing A.L.F., Brask M., Weisbjerg M., Højberg O., Larsen M., Dijkstra J., Erlandsen E., Lund P. (2016). Effect of dietary nitrate level on enteric methane production, hydrogen emission, rumen fermentation, and nutrient digestibility in dairy cows. J. Dairy Sci., 99: 6191–6205. Search in Google Scholar

Parmar N.R., Nirmal Kumar J.I., Joshi C.G. (2015). Exploring diet-dependent shifts in methanogen and methanotroph diversity in the rumen of Mehsani buffalo by a metagenomics approach. Front. Life Sci., 8: 371–378. Search in Google Scholar

Patra A.K., Yu Z. (2014). Combinations of nitrate, saponin, and sulfate additively reduce methane production by rumen cultures in vitro while not adversely affecting feed digestion, fermentation or microbial communities. Biores. Technol., 155: 129–135. Search in Google Scholar

Popova M., Guyader J., Silberberg M., Seradj A.R., Saro C., Bernard A., Gérard C., Martin C., Morgavi D.P. (2019). Changes in the rumen microbiota of cows in response to dietary supplementation with nitrate, linseed, and saponin alone or in combination. Appl. Environ. Microbiol., 85.10.1128/AEM.02657-18636582930504215 Search in Google Scholar

Rymer C., Huntington J., Williams B., Givens D. (2005). In vitro cumulative gas production techniques: History, methodological considerations and challenges. Anim. Feed Sci. Technol., 123: 9–30. Search in Google Scholar

Sakthivel P.C., Kamra D.N., Agarwal N., Chaudhary L.C. (2012). Effect of sodium nitrate and nitrate reducing bacteria on in vitro methane production and fermentation with buffalo rumen liquor. Asian-Australas. J. Anim. Sci., 25: 812. Search in Google Scholar

SAS (2018). SAS 9.4 Macro Language: Reference. SAS institute. Search in Google Scholar

Sharifi M., Khadem A.A. (2012). Dynamic fermentation in ruminants animal products to biogas. Vol. 1. Danesh Negar Press. Search in Google Scholar

Sharifi M., Hosseinkhani A., Sofizade M., Mosavi J. (2016 a). Effects of fat supplementation and chop length on milk composition and ruminal fermentation of cows fed diets containing alfalfa silage. Ir. J. Appl. Anim. Sci., 6: 293–301. Search in Google Scholar

Sharifi M., Taghizadeh A., Hosseinkhani A. (2016 b). The introduction for the livestock and poultry industry in Iran. 1 ed. Agricultural Education and Extension Publications, Tehran, Iran. Search in Google Scholar

Sharifi M., Khadem A., Heins B., Pahlavan R., Mosavi J., Safdari M. (2019 a). Effect of forage feeding level on body weight, body condition score, milk production, and milk urea nitrogen of holstein cows on an organic diet. Ir. J. Appl. Anim. Sci., 9: 617–624. Search in Google Scholar

Sharifi M., Taghizadeh A., Khadem A., Hosseinkhani A., Mohammadzadeh H. (2019 b). Effects of nitrate supplementation and forage level on gas production, nitrogen balance and dry-matter degradation in sheep. Anim. Prod. Sci., 59: 515–523.10.1071/AN17759 Search in Google Scholar

Sharifi M., Taghizadeh A., Hosseinkhani A., Mohammadzadeh H., Palangi V., Macit M., Salem A.Z., Abachi S. (2021). Nitrate supplementation at two forage levels in dairy cows feeding: milk production and composition, fatty acid profiles, blood metabolites, ruminal fermentation, and hydrogen sink. Ann. Anim. Sci., 22: 711–722. Search in Google Scholar

Stultiens K., van Kessel M.A., Frank J., Fischer P., Pelzer C., van Alen T.A., Kartal B., den Camp H.J.O., Jetten M.S. (2020). Diversity, enrichment, and genomic potential of anaerobic methane-and ammonium-oxidizing microorganisms from a brewery wastewater treatment plant. Appl. Microbiol. Biotechnol., 104: 7201–7212. Search in Google Scholar

Tapio I., Snelling T.J., Strozzi F., Wallace R.J. (2017). The ruminal microbiome associated with methane emissions from ruminant livestock. J. Anim. Sci. Biotechnol., 8: 1–11. Search in Google Scholar

Van Zijderveld S., Gerrits W., Dijkstra J., Newbold J., Hulshof R., Perdok H. (2011). Persistency of methane mitigation by dietary nitrate supplementation in dairy cows. J. Dairy Sci., 94: 4028–4038. Search in Google Scholar

Veneman J.B., Muetzel S., Hart K.J., Faulkner C.L., Moorby J.M., Perdok H.B., Newbold C.J. (2015). Does dietary mitigation of enteric methane production affect rumen function and animal productivity in dairy cows? PloS One, 10:e0140282.10.1371/journal.pone.0140282462480226509835 Search in Google Scholar

Wang M., Wang R., Yang S., Deng J.P., Tang S.X., Tan Z.L. (2016). Effects of three methane mitigation agents on parameters of kinetics of total and hydrogen gas production, ruminal fermentation and hydrogen balance using in vitro technique. Anim. Sci. J., 87: 224–232. Search in Google Scholar

Welte C.U., Rasigraf O., Vaksmaa A., Versantvoort W., Arshad A., Op den Camp H.J., Jetten M.S., Lüke C., Reimann J. (2016). Nitrate-and nitrite-dependent anaerobic oxidation of methane. Environ. Microbiol. Rep., 8: 941–955. Search in Google Scholar

Yang C., Rooke J.A., Cabeza I., Wallace R.J. (2016). Nitrate and inhibition of ruminal methanogenesis: microbial ecology, obstacles, and opportunities for lowering methane emissions from ruminant livestock. Front. Microbiol., 7: 132. Search in Google Scholar

Yu Z., Michel F.C., Hansen G., Wittum T., Morrison M. (2005). Development and application of real-time PCR assays for quantification of genes encoding tetracycline resistance. Appl. Environ. Microbiol., 71: 6926–6933. Search in Google Scholar

Zeitz J., Bucher S., Zhou X., Meile L., Kreuzer M., Soliva C. (2013). Inhhibitory effects of saturated fatty acids on methane production by methanogenic Archaea. J. Anim. Feed Sci., 22: 44–49. Search in Google Scholar

Zhao L., Meng Q., Ren L., Liu W., Zhang X., Huo Y., Zhou Z. (2015). Effects of nitrate addition on rumen fermentation, bacterial biodiversity and abundance. Asian-Australas. J. Anim. Sci., 28: 1433–1441. Search in Google Scholar

Zhou Z., Yu Z., Meng Q. (2012). Effects of nitrate on methane production, fermentation, and microbial populations in in vitro ruminal cultures. Biores. Technol., 103: 173–179. Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo