À propos de cet article

Citez

Agenäs S., Lundström I., Holtenius K. (2019). The effect of 17β-estradiol on lactose in plasma and urine in dairy cows in late lactation. J. Dairy Res., 86: 188–192.10.1017/S0022029919000281Search in Google Scholar

Al-Oudat B.A., Alqudah M.A., Audat S.A., Al-Balas Q.Q., El-Elimat T., Has-san M.A., Frhat I.N., Azaizeh M.M. (2019). Design, synthesis, and biologic evaluation of novel chrysin derivatives as cytotoxic agents and caspase-3/7 activators. Drug Des. Devel. Ther., 13: 423–433.10.2147/DDDT.S189476Search in Google Scholar

Bertoni G., Trevisi E., Cappelli F.P., Cappa V. (1994). Variation in blood parameters with mastitis of different severity in dairy cows. Proc. 18th World Buiatrics Congress: 26th Congress of the Italian Association of Buiatrics, 2: 1427–1430.Search in Google Scholar

Burmańczuk A., Hola P., Milczak A., Piech T., Kowalski C., Wojciechowska B., Grabowski T. (2018). Quercetin decrease somatic cells count in mastitis of dairy cows. Res. Vet. Sci., 117: 255–259.10.1016/j.rvsc.2018.01.006Search in Google Scholar

Cui L., Wang H., Ding Y., Li J., Li Ji. (2019). Changes in the blood routine, biochemical indexes and the pro-inflammatory cytokine expressions of peripheral leukocytes in postpartum dairy cows with metritis. BMC Vet. Res., 15: 157.10.1186/s12917-019-1912-ySearch in Google Scholar

Ding Z., Sun G., Zhu Z. (2018). Hesperidin attenuates influenza A virus (H1N1) induced lung injury in rats through its anti-inflammatory effect. Antivir. Ther., 23: 611–615.10.3851/IMP3235Search in Google Scholar

European Food Safety Authority (2017). Scientific Opinion of Flavouring Group Evaluation 410 (FGE.410): 4’,5,7-trihydroxyflavanone from chemical group 25 (phenol derivatives containing ringalkyl, ring-alkoxy, and side-chains with an oxygenated functional group). EFSA Journal, 15: 1–29.Search in Google Scholar

Filho J.C.C, Sarria A.L.F., Becceneri A.B., Fuzer A.M., Batalhao J.R., Paranhosda Silva C.M., Carlos R.M., Vieira P.C., Fernandes J.B., Cominetti M.R. (2014). Copper (II) and 2,2′-bipyridine complexation improves chemopreventive effects of naringenin against breast tumor cells. PLoS One 9, e107058.10.1371/journal.pone.0107058Search in Google Scholar

Food and Drug Administration (2019). Enrichment strategies for clinical trials to support determination of effectiveness of human drugs and biological products. Guidance for Industry, pp. 1–42.Search in Google Scholar

Gao X., Guo M., Zhang Z., Shen P., Yang Z., Zhang N. (2017). Baicalin promotes the bacteriostatic activity of lysozyme on S. aureus in mammary glands and neutrophilic granulocytes in mice. Oncotarget, 8: 19894–19901.10.18632/oncotarget.15193Search in Google Scholar

Garba B., Habibullah S.A., Saidu B., Suleiman N. (2019). Effect of mastitis on some hematological and biochemical parameters of Red Sokoto goats. Vet. World, 12: 572–577.10.14202/vetworld.2019.572-577Search in Google Scholar

Gbylik-Sikorska M., Gajda A., Burmańczuk A., Grabowski, T., Posyniak A. (2019). Development of a UHPLC-MS/MS method for the determination of quercetin in milk and its application to a pharmacokinetic study. J. Vet. Res., 63: 87–91.10.2478/jvetres-2019-0013Search in Google Scholar

He X., Wei Z., Zhou E., Chen L., Kou J., Wang J., Yang Z. (2015). Baicalein attenuates inflammatory responses by suppressing TLR4 mediated NF-κB and MAPK signaling pathways in LPS-induced mastitis in mice. Int. Immunopharmacol., 28: 470–476.10.1016/j.intimp.2015.07.012Search in Google Scholar

Helle J., Kraker K., Bader M.I., Keiler A.M., Zierau O., Vollmer G., Welsh J., Kretzschmar G. (2014). Assessment of the proliferative capacity of the flavanones 8-prenylnaringenin, 6-(1.1-dimethylallyl)naringenin and naringenin in MCF-7 cells and the rat mammary gland. Mol. Cell. Endocrinol., 392: 125–135.10.1016/j.mce.2014.05.014Search in Google Scholar

Hwang S.H., Kim H.Y., Zuo G., Wang Z., Lee J.Y., Lim S.S. (2018). Anti-glycation, carbonyl trapping and anti-inflammatory activities of chrysin derivatives. Molecules, 23: 1752.10.3390/molecules23071752Search in Google Scholar

Lee C.J., Wilson L., Jordan M.A., Nguyen V., Tang J., Smiyun G. (2010). Hesperidin suppressed proliferations of both human breast cancer and androgen-dependent prostate cancer cells. Phytother. Res., 24 (suppl. 1): S15–S19.10.1002/ptr.2856Search in Google Scholar

Lee J.Y., Park W. (2015). Anti-inflammatory effect of chrysin on RAW 264.7 mouse macrophages induced with polyinosinic-polycytidylic acid. Biotechnol. Bioprocess Eng., 20: 1026–1034.10.1007/s12257-015-0416-2Search in Google Scholar

Li C., Schluesener H. (2017). Health-promoting effects of the citrus flavanone hesperidin. Crit. Rev. Food Sci. Nutr., 57: 613–631.10.1080/10408398.2014.906382Search in Google Scholar

Medina-Estrada I., López-Meza J.E., Ochoa-Zarzosa A. (2016). Anti-inflammatory and antimicrobial effects of estradiol in bovine mammary epithelial cells during Staphylococcus aureus internalization. Mediators Inflamm., 2016: 6120509.10.1155/2016/6120509Search in Google Scholar

Miklasińska-Majdanik M., Kępa M., Wojtyczka R.D., Idzik D., Wąsik T.J. (2018). Phenolic compounds diminish antibiotic resistance of Staphylococcus aureus clinical strains. Int. J. Environ. Res. Public Health, 15: 2321.10.3390/ijerph15102321Search in Google Scholar

Oguido A.P., Hohmann M.S., Pinho-Ribeiro F.A., Crespigio J., Domiciano T.P., Verri Jr.W.A., Casella A.M. (2017). Naringenin eye drops inhibit corneal neovascularization by anti-inflammatory and antioxidant mechanisms. Invest. Ophthalmol. Vis. Sci., 58: 5764–5776.10.1167/iovs.16-19702Search in Google Scholar

Parhiz H., Roohbakhsh A., Soltani F., Rezaee R., Iranshahi M. (2015). Antioxidant and anti-inflammatory properties of the citrus flavonoids hesperidin and hesperetin: an updated review of their molecular mechanisms and experimental models. Phytother. Res., 29: 323–331.10.1002/ptr.5256Search in Google Scholar

Perruchot M.-H., Gondret F., Robert F., Dupuis E., Quesnel H., Dessauge F. (2019). Effect of the flavonoid baicalin on the proliferative capacity of bovine mammary cells and their ability to regulate oxidative stress. Peer J., 7: e6565.10.7717/peerj.6565Search in Google Scholar

Pinho-Ribeiro F.A., Zarpelon A.C., Fattori V., Manchope M.F., Mizokami S.S., Casagrande R., Verri Jr.W.A. (2016). Naringenin reduces inflammatory pain in mice. Neuropharmacology, 105: 508–519.10.1016/j.neuropharm.2016.02.019Search in Google Scholar

Ren Z., Shen J., Mei X., Dong H., Li J., Yu H. (2019). Hesperidin inhibits the epithelial to mesenchymal transition induced by transforming growth factor-β1 in A549 cells through Smad signaling in the cytoplasm. Braz. J. Pharm. Sci., 55: doi:10.1590/s2175-97902019000218172.10.1590/s2175-97902019000218172Search in Google Scholar

Sarvesha K., Satyanarayana M.L., Narayanaswamy H.D., Rao S., Yathiraj S., Isloor S., Mukartal S.Y., Singh S.V., Anuradha M.E. (2017). Haemato-biochemical profile and milk leukocyte count in subclinical and clinical mastitis affected crossbred cattle. J. Exp. Biol. Agric. Sci., 5: 001–006.10.18006/2017.5(1).001.006Search in Google Scholar

Snapinn S.M., Jiang Q. (2007). Responder analyses and the assessment of a clinically relevant treatment effect. Trials, 8: 31.10.1186/1745-6215-8-31Search in Google Scholar

Stevens M., Piepers S., Supre K., Dewulf J., De Vliegher S. (2016). Quantification of antimicrobial consumption in adult cattle on dairy herds in Flanders, Belgium, and associations with udder health, milk quality, and production performance. J. Dairy Sci., 99: 2118–2130.10.3168/jds.2015-10199Search in Google Scholar

Stevens M., Piepers S., De Vliegher S. (2019). The effect of mastitis management input and implementation of mastitis management on udder health, milk quality, and antimicrobial consumption in dairy herds. J. Dairy Sci., 102: 2401–2415.10.3168/jds.2018-15237Search in Google Scholar

Tejada S., Pinya S., Martorell M., Capo X., Tur J., Pons A., Sureda A. (2018). Potential anti-inflammatory effects of hesperidin from the genus citrus. Curr. Med. Chem., 25: 4929–4945.10.2174/0929867324666170718104412Search in Google Scholar

Wu T., He M., Zang X., Zhou Y., Qiu T., Pan S., Xu X. (2013). A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim. Biophys. Acta, 1828: 2751–2756.10.1016/j.bbamem.2013.07.029Search in Google Scholar

Yart L., Finot L., Lollivier V., Dessauge F. (2013). Oestradiol enhances apoptosis in bovine mammary epithelial cells in vitro. J. Dairy Res., 80: 113–121.10.1017/S0022029912000714Search in Google Scholar

Zaki M.S., El-Battrawy N., Mostafa S.O., Fawzi O.M., Awad I. (2010). Some biochemical studies on Friesian suffering from subclinical mastitis. Nat. Sci., 8: 143–146.Search in Google Scholar

Zhang F., Dong W., Zeng W., Zhang L., Zhang C., Qiu T., Wang L., Yin X., Zhang Ch., Liang W. (2016). Naringenin prevents TGF-β1 secretion from breast cancer and suppresses pulmonary metastasis by inhibiting PKC activation. Breast Cancer Res., 18: 38.10.1186/s13058-016-0698-0Search in Google Scholar

Zhao Z., Jin G., Ge Y., Guo Z. (2019). Naringenin inhibits migration of breast cancer cells via inflammatory and apoptosis cell signaling pathways. Inflammopharmacology, 27: 1021–1036.10.1007/s10787-018-00556-3Search in Google Scholar

Zierau O., Gester S., Schwab P., Metz P., Kolba S., Wulf M., Vollmer G. (2002). Estrogenic activity of the phytoestrogens naringenin, 6-(1,1-dimethylallyl)naringenin and 8-prenylnaringenin. Planta Med., 68: 449–451.10.1055/s-2002-32089Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine