[Adil S., Şişman T., İncekara Ü. (2014). An investigation on the growth and reproductive performance of Poecilia reticulata (Peters) (Cyprinodontiformes: Cyprinidae) fed diets with dried insects. Mun. Ent. Zool., 9: 638–644.]Search in Google Scholar
[Auer S.K. (2010). Phenotypic plasticity in adult life-history strategies compensates for a poor start in life in Trinidadian guppies (Poecilia reticulata). Am. Nat., 176: 818–829.]Search in Google Scholar
[Aw J.M., Holbrook R.I., de Perera T.B., Kacelnik A. (2009). State-dependent valuation learning in fish: Banded tetras prefer stimuli associated with greater past deprivation. Behav. Process., 81: 333–336.]Search in Google Scholar
[Barroso F.G., de Haro C., Sánchez-Muros M.J., Venegas E., Martínez-Sánchez A., Pérez-Bañón C. (2014). The potential of various insect species for use as food for fish. Aquaculture, 422: 193–201.]Search in Google Scholar
[Belghit I., Liland N.S., Waagbø R., Biancarosa I., Pelusio N., Li Y., Lock E.J. (2018). Potential of insect-based diets for Atlantic salmon (Salmo salar). Aquaculture, 491: 72–81.]Search in Google Scholar
[Cardoso A.C., Couceiro S.R.M. (2017). Insects in the diet of fish from Amazonian streams, in western Pará, Brazil. Mar. Freshw. Res., 68: 2052–2060.]Search in Google Scholar
[Dossey A.T., Morales-Ramos J.A., Rojas M.G. (2016). Editors. Insects as sustainable food ingredients: production, processing and food applications. Academic Press.]Search in Google Scholar
[Døving K.B. (2007). The functional organization of the fish olfactory system. Prog. Neurobiol., 82: 80–86.]Search in Google Scholar
[Fernando G.A.W., Jayakody S., Wijenayake W.H.K., Galappaththy G.N., Yata-wara M., Harishchandra J. (2018). A comparison of the larvivorous habits of exotic Poecilia reticulata and native Aplocheilus parvus. BMC Ecol., 18: 1–12.]Search in Google Scholar
[Fontes T.V., de Oliveira K.R.B., Gomes Almeida I.L., Maria Orlando T., Ro-drigues P.B., Costa D.V.D. (2019). Digestibility of insect meals for Nile tilapia fingerlings. Animals, 9: 181.]Search in Google Scholar
[Gahukar R.T. (2016). Edible insects farming: efficiency and impact on family livelihood, food security, and environment compared with livestock and crops. In: Insects as sustainable food ingredients. Academic Press, pp. 85–111.10.1016/B978-0-12-802856-8.00004-1]Search in Google Scholar
[Ganassin M.J., Frota A., Muniz C.M., Baumgartner M.T., Hahn N.S. (2020). Urbanisation affects the diet and feeding selectivity of the invasive guppy Poecilia reticulata. Ecol. Freshw. Fish, 29: 252–265.]Search in Google Scholar
[Gasco L., Gai F., Maricchiolo G., Genovese L., Ragonese S., Bottari T., Caru-so G. (2018 a). Fishmeal alternative protein sources for aquaculture feeds. In: Feeds for the aquaculture sector. Springer, Cham, pp. 1–28.10.1007/978-3-319-77941-6_1]Search in Google Scholar
[Gasco L., Finke M., Van Huis A. (2018 b). Can diets containing insects promote animal health? J. Insects Food Feed., 4: 1–4.10.3920/JIFF2018.x001]Search in Google Scholar
[Halloran A., Roos N., Eilenberg J., Cerutti A., Bruun S. (2016). Life cycle assessment of edible insects for food protein: a review. Agron. Sustain. Dev., 36: 57.]Search in Google Scholar
[Harpaz S., Slosman T., Segev R. (2005). Effect of feeding guppy fish fry (Poecilia reticulata) diets in the form of powder versus flakes. Aquac. Res., 36: 996–1000.]Search in Google Scholar
[Henry M.A., Gasco L., Chatzifotis S., Piccolo G. (2018). Does dietary insect meal affect the fish immune system? The case of mealworm, Tenebrio molitor on European sea bass, Dicentrarchus labrax. Dev. Comp. Immunol., 81: 204–209.]Search in Google Scholar
[Karthick Raja P., Aanand S., Stephen Sampathkumar J., Padmavathy P. (2019). Silkworm pupae meal as alternative source of protein in fish feed. J. Entomol. Zool., 7: 78–85.]Search in Google Scholar
[Kilarski W. (2012). Fish anatomy (in Polish). Warsaw, Poland, PWRiL, 1st ed., 189 pp. Superworm meal in guppy nutrition 383]Search in Google Scholar
[Kuttiyatveetil J.R., Mitra P., Goldin D., Nickerson M.T., Tanaka T. (2019). Recovery of residual nutrients from agri-food byproducts using a combination of solid-state fermentation and insect rearing. Int. J. Food Sci. Technol., 54: 1130–1140.]Search in Google Scholar
[Lawal M.O., Edokpayi C.A., Osibona A.O. (2012). Food and feeding habits of the guppy, Poecilia reticulata, from drainage canal systems in Lagos, Southwestern Nigeria. West Afr. J. Appl. Ecol., 20: 1–9.]Search in Google Scholar
[Lazzari M., Bettini S., Ciani F., Franceschini V. (2007). Light and transmission electron microscopy study of the peripheral olfactory organ of the guppy, Poecilia reticulata (Teleostei, Poecilidae). Microsc. Res. Tech., 70: 782–789.]Search in Google Scholar
[Lemarie G., Dosdat A., Covès D., Dutto G., Gasset E., Person-Le Ruyet J. (2004). Effect of chronic ammonia exposure on growth of European seabass (Dicentrarchus labrax) juveniles. Aquaculture, 229: 479–491.]Search in Google Scholar
[Lock E.J., Biancarosa I., Gasco L. (2018). Insects as raw materials in compound feed for aquaculture. In: Edible insects in sustainable food systems. Springer, Cham., pp. 263–276.10.1007/978-3-319-74011-9_16]Search in Google Scholar
[Makkar H.P., Tran G., Heuzé V., Ankers P. (2014). State-of-the-art on use of insects as animal feed. Anim. Feed Sci. Technol., 197: 1–33.]Search in Google Scholar
[Metcalfe N.B., Thomson B.C. (1995). Fish recognize and prefer to shoal with poor competitors. Proc. Royal Society of London. Series B: Biol. Sci., 259: 207–210.]Search in Google Scholar
[Mikołajczak Z., Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). The effect of hydrolyzed insect meals in sea trout fingerling (Salmo trutta m. trutta) diets on growth performance, microbiota and biochemical blood parameters. Animals, 10: 1031.]Search in Google Scholar
[Mohammadrezaei D. (2020). The effect of media type on ammonia levels and growth performance of guppy (Poecilia reticulata) in recirculating systems. ISFJ, 28: 25–33.]Search in Google Scholar
[Mugnai C., Salio C., Munari C., Aimar P., Falzone M., Pastorino P., Sicuro B. (2019). Preliminary results of fishmeal substitution with insect meal (Hermetia illucens) on Platy (Xiphophorus maculatus) feeding: effect on gut health, reproductive parameters and water quality. Proc. 23rd Congress of the European Society of Veterinary and Comparative Nutrition. European Society of Veterinary and Comparative Nutrition, pp. 56.]Search in Google Scholar
[Ng W.K., Liew F.L., Ang L.P., Wong K.W. (2001). Potential of mealworm (Tenebrio molitor) as an alternative protein source in practical diets for African catfish, Clarias gariepinus. Aquac. Res., 32: 273–280.]Search in Google Scholar
[Nogales-Mérida S., Gobbi P., Józefiak D., Mazurkiewicz J., Dudek K., Raw-ski M., Kierończyk B., Józefiak A. (2019). Insect meals in fish nutrition. Rev. Aquac., 11: 1080–1103.]Search in Google Scholar
[Oonincx D.G., Van Itterbeeck J., Heetkamp M.J., Van Den Brand H., Van Loon J.J., Van Huis A. (2010). An exploration on greenhouse gas and ammonia production by insect species suitable for animal or human consumption. PloS one, 5 (12).10.1371/journal.pone.0014445301205221206900]Search in Google Scholar
[Oonincx D.G., Van Broekhoven S., Van Huis A., van Loon J.J. (2015). Feed conversion, survival and development, and composition of four insect species on diets composed of food by-products. PloS one, 10 (12).10.1371/journal.pone.0144601468942726699129]Search in Google Scholar
[Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2020). Black soldier fly full-fat larvae meal as an alternative to fish meal and fish oil in Siberian sturgeon nutrition: the effects on physical properties of the feed, animal growth performance, and feed acceptance and utilization. Animals, 10: 2119.]Search in Google Scholar
[Rawski M., Mazurkiewicz J., Kierończyk B., Józefiak D. (2021). Black soldier fly full-fat larvae meal is more profitable than fish meal and fish oil in Siberian sturgeon farming: the effects on aquaculture sustainability, economy and fish GIT development. Animals, 11: 604.]Search in Google Scholar
[Sales J., Janssens G.P. (2003). Nutrient requirements of ornamental fish. Aquat. Living Resour., 16: 533–540.]Search in Google Scholar
[Santamaría Y.V., Corredor-Santamaría W. (2011). Nutritional requirements of freshwater ornamental fish: a review. Rev. MVZ Córdoba, 16: 2458–2469.]Search in Google Scholar
[Seng C.M., Setha T., Nealon J., Socheat D., Chantha N., Nathan M.B. (2008). Community- based use of the larvivorous fish Poecilia reticulata to control the dengue vector Aedes aegypti in domestic water storage containers in rural Cambodia. J. Vector. Ecol., 33: 139–144.]Search in Google Scholar
[Shohet A.J., Watt P.J. (2004). Female association preferences based on olfactory cues in the guppy, Poecilia reticulata. Behav. Ecol. Sociobiol., 55: 363–369.]Search in Google Scholar
[Sinansari S., Fahmi M.R. (2020). Black soldier fly larvae as nutrient-rich diets for ornamental fish. In: IOP Conference Series: Earth and Environmental Science. IOP Publishing, 493: 012027.]Search in Google Scholar
[Sun H., Lü K., Minter E.J., Chen Y., Yang Z., Montagnes D.J. (2012). Combined effects of ammonia and microcystin on survival, growth, antioxidant responses, and lipid peroxidation of bighead carp Hypophthalmythys nobilis larvae. J. Hazard. Mater., 221: 213–219.]Search in Google Scholar
[Suting P.S., Mandal S.C., Patel A.B. (2013). Effect of different dietary lipid sources on growth and reproductive performance of guppy (Poecilia reticulata). Isr. J. Aquac., 65: 1–6.]Search in Google Scholar
[Tacon A.G., Metian M. (2008). Global overview on the use of fish meal and fish oil in industrially compounded aquafeeds: Trends and future prospects. Aquaculture, 285: 146–158.]Search in Google Scholar
[Vidotto-Magnoni A.P., Carvalho E.D. (2009). Aquatic insects as the main food resource of fish the community in a Neotropical reservoir. Neotrop. Ichthyol., 7: 701–708.]Search in Google Scholar
[Weththasinghe P., Hansen J.Ø., Nøkland D., Lagos L., Rawski M., Øverland M. (2021). Full-fat black soldier fly larvae (Hermetia illucens) meal and paste in extruded diets for Atlantic salmon (Salmo salar): Effect on physical pellet quality, nutrient digestibility, nutrient utilization and growth performances. Aquaculture, 530: 735785.]Search in Google Scholar
[Xu X., Ji H., Belghit I., Sun J. (2020). Black soldier fly larvae as a better lipid source than yellow mealworm or silkworm oils for juvenile mirror carp (Cyprinus carpio var. specularis). Aquaculture, 527: 735453.]Search in Google Scholar
[Yacoob S.Y., Browman H.I. (2007). Olfactory and gustatory sensitivity to some feed-related chemicals in the Atlantic halibut (Hippoglossus hippoglossus). Aquaculture, 263: 303–309.]Search in Google Scholar
[Yi H.Y., Chowdhury M., Huang Y.D., Yu X.Q. (2014). Insect antimicrobial peptides and their applications. Appl. Microbiol. Biotechnol., 98: 5807–5822.]Search in Google Scholar
[Zandona E., Auer S.K., Kilham S.S., Howard J.L., López-Sepulcre A., O’Con-nor M.P., Reznick D.N. (2011). Diet quality and prey selectivity correlate with life histories and predation regime in Trinidadian guppies. Funct. Ecol, 25: 964–973.]Search in Google Scholar
[Zarantoniello M., Randazzo B., Gioacchini G., Truzzi C., Giorgini E., Riolo P., Lucon-Xiccato T. (2020). Zebrafish (Danio rerio) physiological and behavioural responses to insect-based diets: A multidisciplinary approach., Sci. Rep., 10: 1–16.]Search in Google Scholar
[Zielińska E., Karaś M., Baraniak B. (2018). Comparison of functional properties of edible insects and protein preparations thereof. Lwt, 91: 168–174.]Search in Google Scholar