Accès libre

Effects of dietary supplementation of iron as sulphates or glycine chelates on the productive performance and concentrations of acute-phase proteins and iron in the serum and liver tissues of broiler chickens

À propos de cet article

Citez

AOAC (2000). Official Methods of Analysis. 17th Edition, J. AOAC Inter., Gaithersburg, MD, USA.Search in Google Scholar

AOAC (2005). Official Methods of Analysis of the Association of Official Chemists. 16th Edition, J. AOAC Inter., Arlington, Virgina, USA.Search in Google Scholar

Arnaudova-Matey A., Shindarska Z., Yankovska T., Kirilova T., Dimitrova D., Dilova V., Todorov T., Ivanova S., Mehmedov T. (2015). Influence of the ferrous methionate and ferrous sulphate on some productive indices in broiler chickens. Bulg. J. Agric. Sci., 21: 225–229.Search in Google Scholar

Bao Y.M., Choct M., Iji P.A., Bruerton K. (2007). Effect of organically complexed copper, iron, manganese and zinc on broiler performance, mineral excretion and accumulation in tissues. J. Appl. Poultry Res., 16: 448–455.Search in Google Scholar

Barnes D.M., Song Z., Klasing K.C., Bottje W. (2002). Protein metabolism during an acute phase response in chickens. Amino Acids, 22: 15–26.Search in Google Scholar

Bovel-Benjamin A.C., Viteri F.E., Allen L.H. (2000). Iron absorption from ferrous bisglycinate and ferric trisglycinate in whole maize is regulated by iron status. Am. J. Clin. Nutr. 71: 1563–1569.Search in Google Scholar

Cao J., Luo X.G., Henry R., Ammerman C.B., Littell R.C., Milles R.D. (1996). Effect of iron concentration age and length of iron feeding on feed intake, and tissue iron concentration of broiler chicks for use as a bioassay of supplemental iron sources. Poultry Sci., 75: 495–504.Search in Google Scholar

Cassat J.E., Skaar E.P. (2013). Iron in infection and immunity. Cell Host Microbe., 13: 509–519.Search in Google Scholar

Ceron J.J., Eckersall P.D., Martynez-Subiela S. (2005). Acute phase proteins in dogs and cats: current knowledge and future perspectives. Vet. Clin. Path., 34: 85–99.Search in Google Scholar

Chamanza R., Toussaint M.J., van Ederen A.M., van Veen L., Hulskamp-Koch C., Fabri T.H. (1999). Serum amyloid A and transferrin in chicken. A preliminary investigation of using acute-phase variables to assess diseases in chickens. Vet. Q., 21: 158–162.Search in Google Scholar

Cherayil B.J. (2010). Iron and immunity: immunological consequences of iron deficiency and overload. Arch. Immunol. Ther. Exp. (Warsz.), 58: 407–415.Search in Google Scholar

Cherayil B.J. (2011). The role of iron in the immune response to bacterial infection. Immunol. Res., 50: 1–9.Search in Google Scholar

Coop R.L., Kyriazakis I. (2001). Influence of host nutrition on the development and consequences of nematode parasitism in ruminants. Trends Parasitol., 17: 325–330.Search in Google Scholar

Dersjant-Li Y., Awati A., Schulze H., Partridge G. (2015). Phytase in non-ruminant animal nutrition: a critical review on phytase activities in the gastrointestinal tract and influencing factors. J. Sci. Food Agric., 95: 878–896.Search in Google Scholar

Dimitrov I., Kamenov V., Angelova P., Petrov M. (2014). Concentration of C-reactive protein in white adipose tissue, liver and blood serum of male wistar rats. Trakia J. Sci., 12: 1.Search in Google Scholar

Dunkley C.S., Mc Reynolds J.L., Dunkley K.D., Njongmeta L.N., Berghman L.R., Kubena L.F., Nisbet D.J., Ricke S.C. (2007). Molting in Salmonella Enteritidis-challenged laying hens fed alfalfa crumbles. IV. Immune and stress protein response. Poultry Sci., 86: 2502–2508.Search in Google Scholar

Eckersall P.D. (2000). Recent advances and future prospects for the use of acute phase proteins as markers of disease in animals. Rev. Med. Vet., 151: 577–584.Search in Google Scholar

Eckersall P.D., Bell R. (2010). Acute phase proteins: Biomarkers of infection and inflammation in veterinary medicine. Vet. J., 185: 23–27.Search in Google Scholar

Feng J., Ma W.Q., Xu Z.R., Wang Y.Z., Liu J.X. (2007). Effects of iron glycine chelate on growth, haematological and immunological characteristics in weaning pigs. Anim. Feed Sci. Technol., 134: 261–272.Search in Google Scholar

Gabay C., Kushner I. (1999). Acute phase proteins and other systemic responses to infammation. N. Engl. J. Med., 340: 448–454.Search in Google Scholar

Galdi M., Carbone N., Valencia M.E. (1989). Comparison of ferric glycinate to ferrous sulfate in model infant formulas: kinetics of vitamin losses. J. Food Sci., 54: 1530–1539.Search in Google Scholar

Gangaidzo I.T., Moyo V.M., Mvundura E., Aggrey G., Murphree N.L., Khumalo H., Saungweme T., Kasvosve I., Gomo Z.A., Rouault T., Boelaert J.R., Gordeuk V.R. (2001). Association of pulmonary tuberculosis with increased dietary iron. J. Infect. Dis. 184: 936–939.Search in Google Scholar

Garcia K.O., Berchieri-Junior A., Santana A.M., Freitas-Neto O.C., Fagliari J.J. (2009). Experimental infection of commercial layers using a Salmonella enterica serovar Gallinarum strain: Leukogram and serum acute-phase protein concentrations. Braz. J. Poult. Sci., 11: 263–270.Search in Google Scholar

Giansanti F., Leboffe L., Pitari G., Ippoliti R., Antonini G. (2012). Physiological roles of ovotransferrin. Biochim. Biophys. Acta, 1820: 218–225.Search in Google Scholar

Gruys E., Toussaint M.J.M., Niewold T.A., Koopmans S.J. (2005). Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B., 6: 1045–1056.Search in Google Scholar

Hallquist N.A., Klasing K.C. (1994). Serotransferrin, ovotransferrin and metallothionein levels during an immune response in chickens. Comp. Biochem. Physiol. B., 108: 375–384.Search in Google Scholar

Henry P.R., Miller E.R. (1995). Iron availability. In: Bioavailability of Nutrients for Animals, Ammerman C.B., Baker D.H., Lewis A.S. (eds). Academic Press, San Diego, pp. 169–199.Search in Google Scholar

Hochepied T., Berger F.G., Baumann H., Libert C. (2003). Alpha(1)-acid glycoprotein: an acute phase protein with inflammatory and immunomodulating properties. Cytokine Growth Factor Rev., 14: 25–34.Search in Google Scholar

Holt P.S., Gast R.K. (2002). Comparison of the effects of infection with Salmonella enteritidis, in combination with an induced molt, on serum levels of the acute phase protein, alpha1 acid glycoprotein, in hens. Poultry Sci., 81: 1295–1300.Search in Google Scholar

Iost C., Name J.J., Jeppsen R.B., Ashmead H.D. (1998). Repleting hemoglobin in iron deficiency anemia in young children through liquid milk fortification with bioavailable iron amino acid chelate. J. Am. Coll. Nutr., 17: 187–194.Search in Google Scholar

Iwasaki K., Morimatsu M., Inanami O., Uchida E., Syuto B., Kuwabara M., Niiyama M. (2001). Isolation, characterization, and cDNA cloning of chicken turpentine-induced protein, a new member of the scavenger receptor cysteine-rich (SRCR) family of proteins. J. Biol. Chem., 23: 9400–9405.Search in Google Scholar

Jarosz Ł., Kwiecień M., Marek A., Grądzki Z., Winiarska-Mieczan A., Kalinowski M., Laskowska E. (2016). Effects of feed supplementation with glycine chelate and iron sulfate on selected parameters of cell-mediated immune response in broiler chickens. Res. Vet. Sci., 107: 68–74.Search in Google Scholar

Ji F., Ma W.Q., Xu Z.R., Wang Y.Z., Liu J.X. (2007). Effects of iron glycine chelate on growth, haematological and immunological characteristics in weanling pigs. Anim. Feed Sci. Technol., 134: 261–272.Search in Google Scholar

Ji F., Ma W.Q., Xu Z.R., He J.X., Wang Y.Z., Liu J.X. (2009). The effect of iron glycine chelate on tissue mineral levels, fecal mineral concentration, and liver antioxidant enzyme activity in weanling pigs. Anim. Feed Sci. Technol., 150: 106–113.Search in Google Scholar

Jorhem L. (2000). Determination of metals in foods by atomic absorption spectrometry after dry ashing: NMKL 1 collaborative study. J. AOAC Inter., 83: 5.Search in Google Scholar

Kegley E.B., Spears J.W., Flowers W.L., Schoenherr W.D. (2002). Iron methionine as a source of iron for the neonatal pig. Nutr. Res., 22: 1209–1217.Search in Google Scholar

Klasing K.C. (1991). Avian inflammatory response: mediation by macrophages. Poultry Sci., 70: 1176–1186.Search in Google Scholar

Kulkarni R.C., Shrivastava H.P., Mandal A.B., Deo C., Deshpande K.Y., Singh R., Bhanja S.K. (2011). Assessment of growth performance, immune response and mineral retention in colour broilers as influenced by dietary iron. Anim. Feed Sci. Technol., 11: 81–90.Search in Google Scholar

Kwiecień M., Samolińska W., Bujanowicz-Haraś B. (2015). Effects of iron-glycine chelate on growth, carcass characteristic, liver mineral concentrations and haematological and biochemical blood parameters in broilers. J. Animal. Phys. Nutr., 99: 1184–1196.Search in Google Scholar

Kwiecień M., Winiarska-Mieczan A., Milczarek A., Tomaszewska E., Mtras J. (2016). Effects of zinc glycine chelate on growth performance, carcass characteristics, bone quality, and mineral content in bone of broiler chicken. Livest. Sci., 191: 43–50.Search in Google Scholar

Langini S., Carbone N., Gald I.M., Barrio R.M.E., Portela M.L., Caro R., Valen-cia M.E. (1988). Ferric glycinate iron bioavailability for rats, as determined by extrinsic radioisotopic labeling of infant formulas. Nutr. Rep. Int., 38: 729–735.Search in Google Scholar

Luterotti S., Kordić T.V., Dodig S. (2011). Simultaneous determination of iron and copper in children’s sera by FAAS. Acta Pharm., 61: 93–102.Search in Google Scholar

Ma W.Q., Sun H., Zhou Y., Wu J., Feng J. (2012). Effects of iron glycine chelate on growth, tissue mineral concentrations, fecal mineral excretion, and liver antioxidant enzyme activities in broilers. Biol. Trace Elem. Res., 149: 204–211.Search in Google Scholar

Moyo V.M., Gangaidzo I.T., Gordeuk V.R., Kiire C.F., Macphail A.P. (1997). Tuberculosis and iron overload in Africa: a review. Cent. Afr. J. Med., 43: 334–339.Search in Google Scholar

Murata H., Shimada N., Yoshioka M. (2004). Current research on acute phase proteins in veterinary diagnosis: an overview. Vet. J., 168: 28–40.Search in Google Scholar

Murray M.J., Murray A.B., Murray M.B., Murray C.J. (1978). The adverse effect of iron repletion on the course of certain infections. Br. Med. J., 2: 1113–1115.Search in Google Scholar

Nollet L., Vander Klis J.D., Lensing M., Spring P. (2007). The effect of replacing inorganic with organic trace minerals in broiler diets on productive performance and mineral excretion. J. App. Poultry Res., 16: 592–597.Search in Google Scholar

NRC(1994). Nutrient requirements of poultry, ninth revised edition. National Academy Press, Washington, USA.Search in Google Scholar

O’Reilly E.L., Eckersall P.D. (2014). Acute phase proteins: a review of their function, behaviour and measurement in chickens. World Poultry Sci. J., 70: 27–44.Search in Google Scholar

Olivares M., Pizarro F., Pineda O., Name J., Hertrampf E., Walter T. (1997). Milk inhibits and ascorbic acid favors ferrous bis-glycine chelate bioavailability in humans. J. Nutr., 127: 1407–1411.Search in Google Scholar

Olivares M., Pizarro F., Ruz M., de Romana D.L. (2012). Acute inhibition of iron bioavailability by zinc: studies in humans. Biometals, 25: 657–664.Search in Google Scholar

Oppenheimer S.J. (2001). Iron and its relation to immunity and infectious disease. J. Nutr., 131: 616–635.Search in Google Scholar

Oscar P., Ashmead H.D. (2001). Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition, 17: 381–384.Search in Google Scholar

Park S.W., Namkung H., Ahn H.J., Paik I.K. (2004). Production of iron enriched eggs of laying hens. Asian-Australas. J. Anim. Sci., 17: 1725–1728.Search in Google Scholar

Park S.W., Namkung H., Ahn H.J., Paik I.K. (2005). Enrichment of vitamins D3, K and iron in eggs of laying hens. Asian-Australas. J. Anim. Sci., 18: 226–229.Search in Google Scholar

Pineda O., Ashmead H.D. (2001). Effectiveness of treatment of iron-deficiency anemia in infants and young children with ferrous bis-glycinate chelate. Nutrition, 17: 381–384.Search in Google Scholar

Polish Norm(1976). 76/R-64781. Feed. Determination of phosphorus content.Search in Google Scholar

Rath C., Anthony N.B., Kannan L., Huff W.E., Huff G.R., Chapman H.D., Erf G.F., Wakenell P. (2009). Serum ovotransferrin as a biomarker of inflammatory diseases in chickens. Poultry Sci., 88: 2069–2074.Search in Google Scholar

Ryley N.G., Ryley J.F. (1978). Effects of saturated sodium chloride solution on coccidial oocysts. Parasitol. 77: 33-39.Search in Google Scholar

Salamano G., Mellia E., Tarantola M., Gennero M.S., Doglione L., Schiavone A. (2010). Acute phase proteins and heterophil:lymphocyte ratio in laying hens in different housing systems. Vet. Rec., 167: 749–751.Search in Google Scholar

Sazawal S., Black R.E., Ramsan M., Chwaya H.M., Stoltzfus R.J., Dutta A., Dhingra U., Kabole I., Deb S., Othman M.K., Kabole F.M. (2006). Effects of routine prophylactic supplementation with iron and folic acid on admission to hospital and mortality in preschool children in a high malaria transmission setting: community-based, randomised, placebo-controlled trial. Lancet, 367: 133–143.Search in Google Scholar

Schaible U.E., Kaufmann S.H. (2004). Iron and microbial infection. Nat. Rev. Microbiol., 2: 946–953.Search in Google Scholar

Selle P.H., Ravindran V. (2008). Phytate-degrading enzymes in pig nutrition. Livest. Sci., 113: 99–122.Search in Google Scholar

Selle P.H., Ravindran V., Bryden W.L., Scott T. (2006). Influence of dietary phytate and exogenous phytase on amino acid digestibility in poultry: a review. Poultry Sci., 43: 89–103.Search in Google Scholar

Seo S.H., Lee H.K., Ahn H.J., Paik I.K. (2008 a). The effect of dietary supplementation of Femethionine chelate and FeSO4 on the iron content of broiler meat. Asian-Australas. J. Anim. Sci., 21: 103–106.10.5713/ajas.2008.70160Search in Google Scholar

Seo S.H., Lee H.K., Lee W.S., Shin K.S., Paik I.K. (2008 b). The effect of level and period of Fe-methionine chelate supplementation on the iron content of boiler meat. Asian-Australas. J. Anim. Sci., 21: 1501–1505.10.5713/ajas.2008.80085Search in Google Scholar

Sevimli A., Bülbul T., Bülbul A., Yagci A. (2013). Chicken amyloid arthropathy: serum amyloid A, interleukin-1β, interleukin-6, tumour necrosis factor-α and nitric oxide profile in acute phase (12th hour). Pol. J. Vet. Sci., 16: 241–247.Search in Google Scholar

Shelton J.L., Southern L.L. (2006). Effects of phytase addition with or without a trace mineral premix on growth performance, bone response variables, and tissue mineral concentrations in commercial broilers. J. Appl. Poult. Res., 15: 94–102.Search in Google Scholar

Shi R., Liu D., Sun J., Jia Y., Zhang P. (2015). Effect of replacing dietary FeSO4 with equal Felevelled iron glycine chelate on broiler chickens. Czech J. Anim. Sci., 60: 233–239.Search in Google Scholar

Shinde D.L., Ingale S.L., Kim J.Y., Pak S.I., Chae B.I. (2011). Efficiency of inorganic and organic iron sources under iron depleted conditions in broilers. Br. Poultry Sci., 52: 578–583.Search in Google Scholar

Spear A.T., Sherman A.R. (1992). Iron deficiency alters DMBA-induced tumor burden and natural killer cell cytotoxicity rats. J. Nutr., 122: 46–55.Search in Google Scholar

Spears J.W. (1999). Reevaluation of the metabolic essentiality of the minerals: review. Asian- Australas. J. Anim. Sci., 12: 1002–1008.Search in Google Scholar

Thurnam D.I., Mc Cabe G.P. (2012). Influence of infection and inflammation on biomarkers of nutritional status with an emphasis on vitamin A and iron. In: Report: Priorities in the assessment of vitamin A and iron status in populations. Panama City, Panama, 15–17 September 2010. Geneva, World Health Organization, pp. 63–80.Search in Google Scholar

Urieli-Shoval S., Linke R.P., Matzner Y. (2000). Expression and function of serum amyloid A, a major acute-phase protein, in normal and disease states. Curr. Opin. Hematol., 7: 64–69.Search in Google Scholar

Vahl T.V., Klooster T. (1987). Dietary iron broiler performance. Brit. Poultry Sci., 28: 567–576.Search in Google Scholar

Wang Z., Cerrate S., Yan F., Sacakli P., Waldroup P.W. (2008). Comparison of different concentrations of inorganic trace minerals in broiler diets on live performance and mineral excretion. Int. J. Poult. Sci., 7: 625–629.Search in Google Scholar

Watson B.C., Matthews J.O., Southern L.L., Shelton J.L. (2005). The interactive effects Eimeria acervulina infection and phytase for broiler chicks. Poultry Sci., 84: 910–913.Search in Google Scholar

Winiarska-Mieczan A., Kwiecień M. (2015). The effects of copper-glycine complexes on chemical composition and sensory attributes of raw, cooked and grilled chicken meat. J. Food Sci. Techn., 52: 4226–4235.Search in Google Scholar

Xie H., Huff G.R., Huff W.E., Balog J.M., Holt P., Rath N.C. (2002). Identification of ovotransferrin as an acute phase protein in chickens. Poultry Sci., 81: 112–120.Search in Google Scholar

Yu B., Huang W.J., Chiou P.W. (2000). Bioavailability of iron from amino acid complex in weaning pigs. Anim. Feed Sci. Technol., 86: 39–52.Search in Google Scholar

Zhang Y., Sun X., Xie Ch., Shu X., Oso A.O., Ruan Z., Deng Z., Wu X., Yin Y. (2015). Effects of ferrous carbamoyl glycine on iron state and absorption in an iron-deficient rat model. Genes Nutr., 10: 54.Search in Google Scholar

Žilic S.M., Božovic I.N., Savic S., Šobajic S. (2006). Heat processing of soybean kernel and its effect on lysine availability and protein solubility. Cent. Eur. J. Biol., 1: 572–583.Search in Google Scholar

Zulkifli I., Najafi P., Nurfarahin A.J., Soleimani A.F., Kumari S., Aryani A.A., O’Reilly E.L., Eckersall P.D. (2014). Acute phase proteins, interleukin 6, and heat shock protein 70 in broiler chickens administered with corticosterone. Poultry Sci., 93: 3112–3118.Search in Google Scholar

eISSN:
2300-8733
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Life Sciences, Biotechnology, Zoology, Medicine, Veterinary Medicine