Accès libre

The Realizability of Theta Graphs as Reconfiguration Graphs of Minimum Independent Dominating Sets

,  et   
21 févr. 2024
À propos de cet article

Citez
Télécharger la couverture

L.W. Beineke, Characterizations of derived graphs, J. Combinatorial Theory 9 (1970), 129–135. BeinekeL.W. Characterizations of derived graphs J. Combinatorial Theory 9 1970 129 135 Search in Google Scholar

R.C. Brewster, C.M. Mynhardt, and L.E. Teshima, Reconfiguration of minimum independent dominating sets in graphs, Commun. Comb. Optim. DOI: 10.22049/cco.2023.28965.1797. BrewsterR.C. MynhardtC.M. TeshimaL.E. Reconfiguration of minimum independent dominating sets in graphs Commun. Comb. Optim. 10.22049/cco.2023.28965.1797 Open DOISearch in Google Scholar

G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, 6th edition, Chapman & Hall, London, 2015. ChartrandG. LesniakL. ZhangP. Graphs and Digraphs 6th edition Chapman & Hall London 2015 Search in Google Scholar

T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs, Marcel Dekker, New York, 1998. HaynesT.W. HedetniemiS.T. SlaterP.J. Domination in Graphs Marcel Dekker New York 1998 Search in Google Scholar

T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998. HaynesT.W. HedetniemiS.T. SlaterP.J. Fundamentals of Domination in Graphs Marcel Dekker New York 1998 Search in Google Scholar

P.J. Heawood, On the four-color map theorem, Quart. J. Pure Math. 29 (1898), 270–285. HeawoodP.J. On the four-color map theorem Quart. J. Pure Math. 29 1898 270 285 Search in Google Scholar

C.M. Mynhardt and S. Nasserasr, Reconfiguration of colourings and dominating sets in graphs, in: F. Chung et al. (eds.), 50 years of Combinatorics, Graph Theory, and Computing, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2020, pp. 171–191. MynhardtC.M. NasserasrS. Reconfiguration of colourings and dominating sets in graphs in: ChungF. (eds.), 50 years of Combinatorics, Graph Theory, and Computing Discrete Math. Appl. (Boca Raton), CRC Press Boca Raton, FL 2020 171 191 Search in Google Scholar

C.M. Mynhardt and L.E. Teshima, A note on some variations of the γ-graph, J. Combin. Math. Combin. Comput. 104 (2018), 217–230. MynhardtC.M. TeshimaL.E. A note on some variations of the γ-graph J. Combin. Math. Combin. Comput. 104 2018 217 230 Search in Google Scholar

L.E. Teshima, The i-Graph and Other Variations on the γ-Graph, PhD thesis, University of Victoria, 2022. Avaliable at https://dspace.library.uvic.ca. TeshimaL.E. The i-Graph and Other Variations on the γ-Graph PhD thesis, University of Victoria 2022 Avaliable at https://dspace.library.uvic.ca. Search in Google Scholar

M.-T. Tsai and D.B. West, A new proof of 3-colorability of Eulerian triangulations, Ars Math. Contemp. 4 (2011), no. 1, 73–77. TsaiM.-T. WestD.B. A new proof of 3-colorability of Eulerian triangulations Ars Math. Contemp. 4 2011 1 73 77 Search in Google Scholar

D.J.A. Welsh, Euler and bipartite matroids, J. Combinatorial Theory 6 (1969), 375–377. WelshD.J.A. Euler and bipartite matroids J. Combinatorial Theory 6 1969 375 377 Search in Google Scholar

Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Mathématiques, Mathématiques générales