This work is licensed under the Creative Commons Attribution 4.0 International License.
L.W. Beineke, Characterizations of derived graphs, J. Combinatorial Theory 9 (1970), 129–135.BeinekeL.W.Characterizations of derived graphsJ. Combinatorial Theory91970129135Search in Google Scholar
R.C. Brewster, C.M. Mynhardt, and L.E. Teshima, Reconfiguration of minimum independent dominating sets in graphs, Commun. Comb. Optim. DOI: 10.22049/cco.2023.28965.1797.BrewsterR.C.MynhardtC.M.TeshimaL.E.Reconfiguration of minimum independent dominating sets in graphsCommun. Comb. Optim.10.22049/cco.2023.28965.1797Open DOISearch in Google Scholar
G. Chartrand, L. Lesniak, and P. Zhang, Graphs and Digraphs, 6th edition, Chapman & Hall, London, 2015.ChartrandG.LesniakL.ZhangP.Graphs and Digraphs6th editionChapman & HallLondon2015Search in Google Scholar
T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Domination in Graphs, Marcel Dekker, New York, 1998.HaynesT.W.HedetniemiS.T.SlaterP.J.Domination in GraphsMarcel DekkerNew York1998Search in Google Scholar
T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, New York, 1998.HaynesT.W.HedetniemiS.T.SlaterP.J.Fundamentals of Domination in GraphsMarcel DekkerNew York1998Search in Google Scholar
P.J. Heawood, On the four-color map theorem, Quart. J. Pure Math. 29 (1898), 270–285.HeawoodP.J.On the four-color map theoremQuart. J. Pure Math.291898270285Search in Google Scholar
C.M. Mynhardt and S. Nasserasr, Reconfiguration of colourings and dominating sets in graphs, in: F. Chung et al. (eds.), 50 years of Combinatorics, Graph Theory, and Computing, Discrete Math. Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2020, pp. 171–191.MynhardtC.M.NasserasrS.Reconfiguration of colourings and dominating sets in graphsin:ChungF.(eds.),50 years of Combinatorics, Graph Theory, and ComputingDiscrete Math. Appl. (Boca Raton),CRC PressBoca Raton, FL2020171191Search in Google Scholar
C.M. Mynhardt and L.E. Teshima, A note on some variations of the γ-graph, J. Combin. Math. Combin. Comput. 104 (2018), 217–230.MynhardtC.M.TeshimaL.E.A note on some variations of the γ-graphJ. Combin. Math. Combin. Comput.1042018217230Search in Google Scholar
L.E. Teshima, The i-Graph and Other Variations on the γ-Graph, PhD thesis, University of Victoria, 2022. Avaliable at https://dspace.library.uvic.ca.TeshimaL.E.The i-Graph and Other Variations on the γ-GraphPhD thesis,University of Victoria2022Avaliable at https://dspace.library.uvic.ca.Search in Google Scholar
M.-T. Tsai and D.B. West, A new proof of 3-colorability of Eulerian triangulations, Ars Math. Contemp. 4 (2011), no. 1, 73–77.TsaiM.-T.WestD.B.A new proof of 3-colorability of Eulerian triangulationsArs Math. Contemp.4201117377Search in Google Scholar
D.J.A. Welsh, Euler and bipartite matroids, J. Combinatorial Theory 6 (1969), 375–377.WelshD.J.A.Euler and bipartite matroidsJ. Combinatorial Theory61969375377Search in Google Scholar