À propos de cet article

Citez

Man, M., Jalil, M.A. and Bakar, W.A. (2023) “Fi-Eclat: An enhancement of Incremental Eclat algorithm,” 1ST INTERNATIONAL POSTGRADUATE CONFERENCE ON OCEAN ENGINEERING TECHNOLOGY AND INFORMATICS 2021 (IPCOETI 2021) [Preprint]. Available at: https://doi.org/10.1063/5.0110230. Search in Google Scholar

Jain, P., Gyanchandani, M. and Khare, N. (2016) “Big Data Privacy: A Technological Perspective and Review,” Journal of Big Data, 3(1). Available at: https://doi.org/10.1186/s40537-016-0059-y. Search in Google Scholar

Yusof, M.K. (2017) “Efficiency of JSON for data retrieval in Big Data,” Indonesian Journal of Electrical Engineering and Computer Science, 7(1), p. 250. Available at: https://doi.org/10.11591/ijeecs.v7.i1.pp250-262. Search in Google Scholar

Srinadh, V. (2022) “Evaluation of Apriori, FP growth and Eclat Association rule mining algorithms,” International journal of health sciences, pp. 7475–7485. Available at: https://doi.org/10.53730/ijhs.v6ns2.6729. Search in Google Scholar

Borgelt, C. (2003). Efficient Implementations of Apriori and Eclat. Proceedings of the IEEE ICDM Workshop on Frequent Itemset Mining Implementations; 19 November 2003. Search in Google Scholar

Kumbhare, T.A. and Chobe, S.V., (2014) An overview of association rule mining algorithms. International Journal of Computer Science and Information Technologies, 5(1), pp.927-930.x Search in Google Scholar

Chun-Sheng, Z. and Yan, L. (2014) “Extension of local association rules mining algorithm based on Apriori algorithm,” 2014 IEEE 5th International Conference on Software Engineering and Service Science [Preprint]. Available at: https://doi.org/10.1109/icsess.2014.6933577. Search in Google Scholar

R. Ishita, and A. Rathod, International Journal of Computer Applications 143, 33-37 (2016). Search in Google Scholar

M. J. Zaki, S. Parthasarathy, M. Ogihara, and W. Li, Data Mining and Knowledge Discovery 1, 343-373 (1997). Search in Google Scholar

K. Maniktala, J. Singh, and R. K. Gurm, International Journal of Technology and Computing 2, 547-548 (2016). Search in Google Scholar

W. A. W. A. Bakar, M. Man, and Z. Abdullah, Telkomnika 18, 562-570 (2020). Search in Google Scholar

M. Benjamin, High-speed inserts with MySQL, Available: https://medium.com/@benmorel/high-speed-insertswith-mysql-9d3dcd76f723 (Accessed 17 Jan 2023). Search in Google Scholar

W. A. B. W. A. Bakar, Z. Abdullah, M. Y. B. M. Saman, M. Man, T. Herawan, and A. R. Hamdan, “Incremental-eclat model: an implementation via benchmark case study,” in Advances in Machine Learning and Signal Processing, edited by J. S. Ping, L. W. Wai, H. A. Sulaiman, M. A. Othman, and M. S. Saat (Springer International Publishing, Switzerland, 2016), pp. 35-46. Search in Google Scholar

Panjaitan, S., Sulindawaty, Amin, M., Lindawati, S., Watrianthos, R., Sihotang, H. T., & Sinaga, B. (2019). Implementation of apriori algorithm for analysis of Consumer Purchase Patterns. Journal of Physics: Conference Series, 1255(1), 012057. https://doi.org/10.1088/1742-6596/1255/1/012057 Search in Google Scholar

Wang, H.-B., & Gao, Y.-J. (2021). Research on parallelization of Apriori algorithm in Association Rule Mining. Procedia Computer Science, 183, 641–647. https://doi.org/10.1016/j.procs.2021.02.109 Search in Google Scholar

Haykin, S. Neural Networks: A Comprehensive Foundation, 2nd ed.; Prentice Hall PTR: Upper Saddle River, NJ, USA, 1999. Search in Google Scholar

Beyond the Maximum Storage Capacity Limit in Hopfield Recurrent Neural Networks Search in Google Scholar

Hu X, Feng G, Li H, Chen Y, Duan S (2014) An adjustable memristor model and its application in small-world neural networks. In: 2014 international joint conference on neural networks (IJCNN). Beijing, China Search in Google Scholar

Fekete T, Beacher FDCC, Cha J, Rubin D, Mujica-Parodi LR (2014) Small-world network properties inprefrontal cortex correlate with predictors of psychopathology risk in young children: a NIRS study. Neuroimage 85:345–353 Search in Google Scholar

Taylor NR (2013) Small world network strategies for studying protein structures and binding. Comput Struct Biotechnol J5(6):1–7 Search in Google Scholar

Zaki, M. J. (2000). Scalable algorithms for association mining. IEEE Transactions on Knowledge and Data Engineering, 12(3), 372–390. doi:10.1109/69.846291. Open DOISearch in Google Scholar

Zhang, X., Tang, Y., Liu, Q., Liu, G., Ning, X., & Chen, J. (2021). A fault analysis method based on association rule mining for distribution terminal unit. Applied Sciences (Switzerland), 11(11), 5221. doi:10.3390/app11115221. Open DOISearch in Google Scholar

Li, Z. F., Liu, X. F., & Cao, X. (2011). A study on improved Eclat data mining algorithm. Advanced Materials Research, 328-330, 1896–1899. https://doi.org/10.4028/www.scientific.net/amr.328-330.1896 Search in Google Scholar

Gayathri, G. (2017). Performance comparison of Apriori, Eclat and FPGrowth algorithm for association rules learning. International Journal of Computer Science and Mobile Computing, 81-89. Search in Google Scholar

Robu, V., dos Santos, V. D. (2019). Mining frequent patterns in data using apriori and Eclat: A comparison of the algorithm performance and Association Rule Generation. 2019 6th International Conference on Systems and Informatics (ICSAI). https://doi.org/10.1109/icsai48974.2019.9010367 Search in Google Scholar

Sinthuja, M., Puviarasan, N., Aruna P. (2017). Evaluating the Performance of Association Rule Mining Algorithms. World Applied Sciences Journal 35 (1): 43-53. Doi: 10.5829/idosi.wasj.2017.43.53 Open DOISearch in Google Scholar