[1. Dzienis P., Mosdorf R. (2014), Stability of periodic bubble departures at a low frequency, Chemical Engineering Science,109, 171-182.10.1016/j.ces.2014.02.001]Search in Google Scholar
[2. Femat R., Ramirez J.A., Soria A. (1998), Chaotic flow structure in a vertical bubble column, Physics Letters A,248 (1), 67–79.10.1016/S0375-9601(98)00506-4]Search in Google Scholar
[3. Grassberger P., and Procaccia I. (1983), Measuring the strangeness of strange attractors, Physica - D,9, 189–208.10.1016/0167-2789(83)90298-1]Search in Google Scholar
[4. Kazakis N.A., Mouza A.A., Paras S.V. (2008), Coalescence during bubble formation at two neighbouring pores: an experimental study in microscopic scale, Chemical Engineering Science,63, 5160–517810.1016/j.ces.2008.07.006]Search in Google Scholar
[5. Lavensona D.M., Kelkara A.V., Daniel A. B., Mohammad S.A., Koubab G., Aicheleb C.P. (2016), Gas evolution rates – A critical uncertainty in challenged gas-liquid separations, Journal of Petroleum Science and Engineering, 147, 816-82810.1016/j.petrol.2016.10.005]Search in Google Scholar
[6. Legendre D., Magnaudet J., Mougin G. (2003), Hydrodynamic interactions between two spherical bubbles rising side by side in a viscous liquid, Journal of Fluid Mechanics,497, 133–166.10.1017/S0022112003006463]Search in Google Scholar
[7. Marwan N.(2019), Cross Recurrence Plot Toolbox for Matlab, Ver. 5.15, Release 28.10, http://tocsy.pik-potsdam.de.]Search in Google Scholar
[8. Marwan N., Romano M. C., Thiel M., Kurths J. (2007),Recurrence Plots for the Analysis of Complex Systems, Physics Reports, 438, 237 – 329.10.1016/j.physrep.2006.11.001]Search in Google Scholar
[9. Mosdorf R., Dzienis P., Litak G. (2017), The loss of synchronization between air pressure fluctuations and liquid flow inside the nozzle during the chaotic bubble departures, Meccanica, 52, 2641–265410.1007/s11012-016-0597-6]Search in Google Scholar
[10. Mosdorf R., Wyszkowski T. (2011), Experimental investigations of deterministic chaos appearance in bubbling flow, International Journal of Heat and Mass Transfer, 54, 5060–5069.10.1016/j.ijheatmasstransfer.2011.07.023]Search in Google Scholar
[11. Mosdorf R., Wyszkowski T. (2013), Self-organising structure of bubbles departures, International Journal of Heat and Mass Transfer, 61, 277–286.10.1016/j.ijheatmasstransfer.2013.02.008]Search in Google Scholar
[12. Sanada T., Sato A., Shirota M.T., Watanabe M. (2009), Motion and coalescence of a pair of bubbles rising side by side, Chemical Engineering Science, 64, 2659-2671.10.1016/j.ces.2009.02.042]Search in Google Scholar
[13. Schuster H.G. (1993), Deterministic Chaos. An Introduction, PWN, Warszawa (in Polish).]Search in Google Scholar
[14. Snabre P., Magnifotcham F. (1997), Formation and rise of a bubble stream in viscous liquid, European Physical Journal B, 4, 369-377.10.1007/s100510050392]Search in Google Scholar
[15. Torrence C., Compo G. P. (1998), A practical guide to wavelet analysis, Bulletin of the American Meteorological Society,79, 61-78.10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2]Search in Google Scholar
[16. Vazquez A., Leifer I., Sanchez R.M. (2010), Consideration of the dynamic forces during bubble growth in a capillary tube, Chemical Engineering Science, 65, 4046–4054.10.1016/j.ces.2010.03.041]Search in Google Scholar
[17. Wolf A., Swift J.B., Swinney H.L., Vastano J.A. (1985), Determining Lyapunov Exponent from a Time series, Physica-D, 16, 285–317.10.1016/0167-2789(85)90011-9]Search in Google Scholar