1. bookVolume 13 (2019): Edition 3 (September 2019)
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Analysis of the Influence of Magnetic Induction Ramp Profile on Axial Force and Friction Torque Generated by MR Fluid

Publié en ligne: 05 Nov 2019
Volume & Edition: Volume 13 (2019) - Edition 3 (September 2019)
Pages: 153 - 157
Reçu: 21 Jul 2019
Accepté: 15 Jul 2019
Détails du magazine
Format
Magazine
eISSN
2300-5319
Première parution
22 Jan 2014
Périodicité
4 fois par an
Langues
Anglais

1. Ajay Kumar H. N., Shilpashree D. J., Adarsh M. S., Amith D., Kulkarni S. (2016), Development of Smart Squeeze Film Dampers for Small Rotors, Procedia Engineering, 144, 790-800,10.1016/j.proeng.2016.05.088Search in Google Scholar

2. Bajkowski J.M. (2012), Design, analysis and performance evaluation of the linear, magnetorheological damper, Acta Mechanica et Automatica, 6(1), 5-9.Search in Google Scholar

3. Chen S., Huang J., Shu H., Sun T., Jian K., (2013) Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid, Advances in Materials Science and Engineering, 2013, 1-6.10.1155/2013/290691Search in Google Scholar

4. Gong X., Guo, Ch., Xuan Sh., Liu T., Zong L., Peng Ch. (2012), Oscillatory normal forces of magnetorheological fluids, Soft Matter, 8(19), 5256-5261,10.1039/c2sm25341kSearch in Google Scholar

5. Guldbakke J. M., Hesselbach J. (2006), Development of bearings and a damper based on magnetically controllable fluids, Journal of Physics, 18, 2959.10.1088/0953-8984/18/38/S29Search in Google Scholar

6. Guo Ch.Y., Gong X.L. (2012,) Normal forces of magnetorheological fluids under oscillatory shear, Journal of Magnetism and Magnetic Materials, 324(6), 1218-1224.10.1016/j.jmmm.2011.11.013Search in Google Scholar

7. Hegger C. and Maas J. (2016) Investigation of the squeeze strengthening effect in shear mode, J. Intell. Mater. Syst. Struct., 27 1895–907.Search in Google Scholar

8. Horak W., Salwiński J., Szczęch M. (2017a), Analysis of the influence of selected factors on the capacity of thrust sliding bearings lubricated with magnetic fluids, Tribologia, 48(4), 33–38.10.5604/01.3001.0010.5988Search in Google Scholar

9. Horak W., Salwiński J., Szczęch M. (2017b), Experimental Study on Normal Force in MR Fluids Under Low and High Shear Rates, Machine Dynamics Research, 41(1), 89-100.Search in Google Scholar

10. Horak W., Salwiński J., Szczęch M. (2017c), Test stand for the examination of magnetic fluids in shear and squeeze flow mode, Tribologia, 48(2), 67–75.10.5604/01.3001.0010.6290Search in Google Scholar

11. Jang K.I., Min B.K., Seok J. (2011), A behavior model of a magnetorheological fluid in direct shear mode, Journal of Magnetism and Magnetic Materials, 323(10), 1324-1329.10.1016/j.jmmm.2010.11.039Search in Google Scholar

12. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Magnetorheological Shock Absorber, Acta Mechanica et Automatica, 11(4), 253-259.10.1515/ama-2017-0039Search in Google Scholar

13. Klingenberg D.J., Ulicny J.C., Golden M.A. (2007), Mason numbers for magnetorheology, Journal of Rheology, 51(5), 883–893;10.1122/1.2764089Search in Google Scholar

14. Kubík M., Macháček O., Strecker Z., Roupec J., Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structure, 26 047002.10.1088/1361-665X/aa6066Search in Google Scholar

15. Laun H. M., Schmidt G., Gabriel C., Kieburg C., (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations, Rheologica Acta, 47(9), 1049-1059.Search in Google Scholar

16. Li W., Zhang X. (2008), The effect of friction on magnetorheological fluids, Korea-Aust. Rheol. J., 20, 45–50.Search in Google Scholar

17. López-López M.T., Kuzhir P., Durań J.D.G, Bossis G. (2010), Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses, Journal of Rheology, 5(5), 1119-113610.1122/1.3479043Search in Google Scholar

18. Odenbach S., Pop L.M., Zubarev A.Yu. (2007), Rheological properties of magnetic fluids and their microstructural background, GAMM-Mitt, 1, 195-204.10.1002/gamm.200790008Search in Google Scholar

19. Raj K., Moskowitz B., Casciari R. (1995), Advances in ferrofluid technology, Journal of Magnetism and Magnetic Materials, 149, 174-180.10.1016/0304-8853(95)00365-7Search in Google Scholar

20. Rosensweig R.E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge.Search in Google Scholar

21. Salwiński J., Horak W. (2011), Measurement of normal force in magnetorheological and ferrofluid lubricated bearings, Key Engineering Materials, 490, 25-32.10.4028/www.scientific.net/KEM.490.25Search in Google Scholar

22. See H., Tanner R. (2003), Shear rate dependence of the normal force of a magnetorheological suspension, Rheologica Acta, 42(1-2),166-170.10.1007/s00397-002-0268-5Search in Google Scholar

23. Shan L., Chen K., Zhou M., Zhang X., Meng Y., Tian Y. (2015), Shear history effect of magnetorheological fluids, Smart Materials and Structures, 24(10), 105030.10.1088/0964-1726/24/10/105030Search in Google Scholar

24. Szczęch M., Horak W. (2017), Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals, IEEE Transactions on Magnetics, 53(7), 1–5.10.1109/TMAG.2017.2672922Search in Google Scholar

25. Vekas L. (2008), Ferrofluids and Magnetorheological Fluids, Advances in Science and Technology, 54, 127-136.10.4028/3-908158-11-7.127Search in Google Scholar

26. Wang Y., Yin S., Huang H., (2016) Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement, Precis. Eng., 43, 93–104.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo