[1. Ajay Kumar H. N., Shilpashree D. J., Adarsh M. S., Amith D., Kulkarni S. (2016), Development of Smart Squeeze Film Dampers for Small Rotors, Procedia Engineering, 144, 790-800,10.1016/j.proeng.2016.05.088]Search in Google Scholar
[2. Bajkowski J.M. (2012), Design, analysis and performance evaluation of the linear, magnetorheological damper, Acta Mechanica et Automatica, 6(1), 5-9.]Search in Google Scholar
[3. Chen S., Huang J., Shu H., Sun T., Jian K., (2013) Analysis and Testing of Chain Characteristics and Rheological Properties for Magnetorheological Fluid, Advances in Materials Science and Engineering, 2013, 1-6.10.1155/2013/290691]Search in Google Scholar
[4. Gong X., Guo, Ch., Xuan Sh., Liu T., Zong L., Peng Ch. (2012), Oscillatory normal forces of magnetorheological fluids, Soft Matter, 8(19), 5256-5261,10.1039/c2sm25341k]Search in Google Scholar
[5. Guldbakke J. M., Hesselbach J. (2006), Development of bearings and a damper based on magnetically controllable fluids, Journal of Physics, 18, 2959.10.1088/0953-8984/18/38/S29]Search in Google Scholar
[6. Guo Ch.Y., Gong X.L. (2012,) Normal forces of magnetorheological fluids under oscillatory shear, Journal of Magnetism and Magnetic Materials, 324(6), 1218-1224.10.1016/j.jmmm.2011.11.013]Search in Google Scholar
[7. Hegger C. and Maas J. (2016) Investigation of the squeeze strengthening effect in shear mode, J. Intell. Mater. Syst. Struct., 27 1895–907.]Search in Google Scholar
[8. Horak W., Salwiński J., Szczęch M. (2017a), Analysis of the influence of selected factors on the capacity of thrust sliding bearings lubricated with magnetic fluids, Tribologia, 48(4), 33–38.10.5604/01.3001.0010.5988]Search in Google Scholar
[9. Horak W., Salwiński J., Szczęch M. (2017b), Experimental Study on Normal Force in MR Fluids Under Low and High Shear Rates, Machine Dynamics Research, 41(1), 89-100.]Search in Google Scholar
[10. Horak W., Salwiński J., Szczęch M. (2017c), Test stand for the examination of magnetic fluids in shear and squeeze flow mode, Tribologia, 48(2), 67–75.10.5604/01.3001.0010.6290]Search in Google Scholar
[11. Jang K.I., Min B.K., Seok J. (2011), A behavior model of a magnetorheological fluid in direct shear mode, Journal of Magnetism and Magnetic Materials, 323(10), 1324-1329.10.1016/j.jmmm.2010.11.039]Search in Google Scholar
[12. Jastrzębski Ł., Sapiński B. (2017), Experimental Investigation of an Automotive Magnetorheological Shock Absorber, Acta Mechanica et Automatica, 11(4), 253-259.10.1515/ama-2017-0039]Search in Google Scholar
[13. Klingenberg D.J., Ulicny J.C., Golden M.A. (2007), Mason numbers for magnetorheology, Journal of Rheology, 51(5), 883–893;10.1122/1.2764089]Search in Google Scholar
[14. Kubík M., Macháček O., Strecker Z., Roupec J., Mazůrek I. (2017), Design and testing of magnetorheological valve with fast force response time and great dynamic force range, Smart Material and Structure, 26 047002.10.1088/1361-665X/aa6066]Search in Google Scholar
[15. Laun H. M., Schmidt G., Gabriel C., Kieburg C., (2008) Reliable plate–plate MRF magnetorheometry based on validated radial magnetic flux density profile simulations, Rheologica Acta, 47(9), 1049-1059.]Search in Google Scholar
[16. Li W., Zhang X. (2008), The effect of friction on magnetorheological fluids, Korea-Aust. Rheol. J., 20, 45–50.]Search in Google Scholar
[17. López-López M.T., Kuzhir P., Durań J.D.G, Bossis G. (2010), Normal stresses in a shear flow of magnetorheological suspensions: Viscoelastic versus Maxwell stresses, Journal of Rheology, 5(5), 1119-113610.1122/1.3479043]Search in Google Scholar
[18. Odenbach S., Pop L.M., Zubarev A.Yu. (2007), Rheological properties of magnetic fluids and their microstructural background, GAMM-Mitt, 1, 195-204.10.1002/gamm.200790008]Search in Google Scholar
[19. Raj K., Moskowitz B., Casciari R. (1995), Advances in ferrofluid technology, Journal of Magnetism and Magnetic Materials, 149, 174-180.10.1016/0304-8853(95)00365-7]Search in Google Scholar
[20. Rosensweig R.E. (1985), Ferrohydrodynamics, Cambridge University Press, Cambridge.]Search in Google Scholar
[21. Salwiński J., Horak W. (2011), Measurement of normal force in magnetorheological and ferrofluid lubricated bearings, Key Engineering Materials, 490, 25-32.10.4028/www.scientific.net/KEM.490.25]Search in Google Scholar
[22. See H., Tanner R. (2003), Shear rate dependence of the normal force of a magnetorheological suspension, Rheologica Acta, 42(1-2),166-170.10.1007/s00397-002-0268-5]Search in Google Scholar
[23. Shan L., Chen K., Zhou M., Zhang X., Meng Y., Tian Y. (2015), Shear history effect of magnetorheological fluids, Smart Materials and Structures, 24(10), 105030.10.1088/0964-1726/24/10/105030]Search in Google Scholar
[24. Szczęch M., Horak W. (2017), Numerical simulation and experimental validation of the critical pressure value in ferromagnetic fluid seals, IEEE Transactions on Magnetics, 53(7), 1–5.10.1109/TMAG.2017.2672922]Search in Google Scholar
[25. Vekas L. (2008), Ferrofluids and Magnetorheological Fluids, Advances in Science and Technology, 54, 127-136.10.4028/3-908158-11-7.127]Search in Google Scholar
[26. Wang Y., Yin S., Huang H., (2016) Polishing characteristics and mechanism in magnetorheological planarization using a permanent magnetic yoke with translational movement, Precis. Eng., 43, 93–104.]Search in Google Scholar