[1. Boubekri N., Chakraborty P. (2002), Robotic grasping: gripper designs, control methods and grasp configurations – a review of research, Integrated Manufacturing Systems, 13, 520–531.10.1108/09576060210442978]Search in Google Scholar
[2. Carbone G. (2013), Grasping in robotics, Springer-Verlag London.10.1007/978-1-4471-4664-3]Search in Google Scholar
[3. Causey G. (2003), Guidelines for the design of robotic gripping systems, Assembly Automation, 23(1), 18–28.10.1108/01445150310460033]Ouvrir le DOISearch in Google Scholar
[4. Causey G.C., Quinn R.D. (1998), Gripper design guidelines for modular manufacturing, IEEE International Conference on Robotics and Automation, 2, 1453–1458.10.1109/ROBOT.1998.677309]Ouvrir le DOISearch in Google Scholar
[5. Ceccarelli M., Cuadrado J., Dopico D. (2002), An optimum synthesis for gripping mechanisms by using natural coordinates, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016(6), 643–653.10.1243/095440602320192292]Ouvrir le DOISearch in Google Scholar
[6. Cuadrado J., Naya M.A., Ceccarelli M., Carbone G. (2002), An optimum design procedure for two-finger grippers: a case of study, IFToMM Electronic Journal of Computational Kinematics, 15403(1).]Search in Google Scholar
[7. Ellekilde L.-P., Petersen H.G. (2006), Design and test of object aligning grippers for industrial applications, IEEE/RSJ International Conference on Intelligent Robots and Systems, 5165–5170.10.1109/IROS.2006.281652]Search in Google Scholar
[8. Krenich S. (2004), Multicriteria design optimization of robot gripper mechanisms, Solid Mechanics and Its Applications, 117, 207–218, Springer Netherlands.10.1007/1-4020-2267-0_20]Search in Google Scholar
[9. Lanni C., Ceccarelli M. (2009), An optimization problem algorithm for kinematic design of mechanisms for two-finger grippers, Open Mechanical Engineering Journal, 3, 49–62.10.2174/1874155X00903010049]Search in Google Scholar
[10. Monkman G., Hesse S., Steinmann R., Schunk H. (2007), Robot grippers, Wiley.10.1002/9783527610280]Search in Google Scholar
[11. Siciliano B., Khatib O. (2008), Springer handbook of robotics, Springer Verlag Berlin Heidelberg.10.1007/978-3-540-30301-5]Search in Google Scholar
[12. Tarnowski W. (1997), Foundations of engineering design, CAD, CAM, Wydawnictwa Naukowo-Techniczne, Warszawa.]Search in Google Scholar
[13. Thulesen T.N., Petersen H.G, (2016), RobWorkPhysicsEngine: A new Dynamic Simulation Engine for Manipulation Action, IEEE International Conference on Robotics and Automation (ICRA), 2060-2067.10.1109/ICRA.2016.7487354]Search in Google Scholar
[14. Wolf A., Steinmann R., Schunk H. (2005), Grippers In Motion, Springer Berlin Heidelberg.]Search in Google Scholar
[15. Wolniakowski A., Jorgensen J.A., Miatliuk K., Petersen H.G., Krüger N. (2015), Task and Context Sensitive Optimization of Gripper Design Using Dynamic Grasp Simulation, 20th International Conference on Methods and Models in Automation and Robotics, 29-34.10.1109/MMAR.2015.7283701]Search in Google Scholar
[16. Wolniakowski A., Miatliuk K., Gosiewski Z., Jørgensen J.A., Bodenhagen L., Petersen H.G, Krüger N. (2017), Task and Context Sensitive Gripper Design Learning Using Dynamic Grasp Simulation, Journal of Intelligent and Robotic Systems, 87(1), 15-42.10.1007/s10846-017-0492-y]Search in Google Scholar
[17. Wolniakowski A., Miatliuk K., Krüger N., Rytz J.A. (2013), Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design, International Conference on Simulation, Modelling and Programming for Autonomous Robots, LNCS, 8810, 450-461.10.1007/978-3-319-11900-7_38]Search in Google Scholar
[18. Zhang M.T., Goldberg K. (2006), Designing robot grippers: optimal edge contacts for part alignment, Robotica, 25, 341-349.10.1017/S0263574706003134]Search in Google Scholar
[19. Zhang T., Cheung L., Goldberg K. (2001), Shape tolerance for robot gripper jaws, IEEE/RSJ International Conference on Intelligent Robots Systems, 1782–1787.]Search in Google Scholar