1. bookVolume 12 (2018): Issue 1 (March 2018)
Journal Details
Format
Journal
eISSN
2300-5319
First Published
22 Jan 2014
Publication timeframe
4 times per year
Languages
English
Open Access

Compensating Pose Uncertainties through Appropriate Gripper Finger Cutouts

Published Online: 04 Apr 2018
Volume & Issue: Volume 12 (2018) - Issue 1 (March 2018)
Page range: 78 - 83
Received: 27 Oct 2016
Accepted: 22 Mar 2018
Journal Details
Format
Journal
eISSN
2300-5319
First Published
22 Jan 2014
Publication timeframe
4 times per year
Languages
English

1. Boubekri N., Chakraborty P. (2002), Robotic grasping: gripper designs, control methods and grasp configurations – a review of research, Integrated Manufacturing Systems, 13, 520–531.10.1108/09576060210442978Search in Google Scholar

2. Carbone G. (2013), Grasping in robotics, Springer-Verlag London.10.1007/978-1-4471-4664-3Search in Google Scholar

3. Causey G. (2003), Guidelines for the design of robotic gripping systems, Assembly Automation, 23(1), 18–28.10.1108/01445150310460033Open DOISearch in Google Scholar

4. Causey G.C., Quinn R.D. (1998), Gripper design guidelines for modular manufacturing, IEEE International Conference on Robotics and Automation, 2, 1453–1458.10.1109/ROBOT.1998.677309Open DOISearch in Google Scholar

5. Ceccarelli M., Cuadrado J., Dopico D. (2002), An optimum synthesis for gripping mechanisms by using natural coordinates, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2016(6), 643–653.10.1243/095440602320192292Open DOISearch in Google Scholar

6. Cuadrado J., Naya M.A., Ceccarelli M., Carbone G. (2002), An optimum design procedure for two-finger grippers: a case of study, IFToMM Electronic Journal of Computational Kinematics, 15403(1).Search in Google Scholar

7. Ellekilde L.-P., Petersen H.G. (2006), Design and test of object aligning grippers for industrial applications, IEEE/RSJ International Conference on Intelligent Robots and Systems, 5165–5170.10.1109/IROS.2006.281652Search in Google Scholar

8. Krenich S. (2004), Multicriteria design optimization of robot gripper mechanisms, Solid Mechanics and Its Applications, 117, 207–218, Springer Netherlands.10.1007/1-4020-2267-0_20Search in Google Scholar

9. Lanni C., Ceccarelli M. (2009), An optimization problem algorithm for kinematic design of mechanisms for two-finger grippers, Open Mechanical Engineering Journal, 3, 49–62.10.2174/1874155X00903010049Search in Google Scholar

10. Monkman G., Hesse S., Steinmann R., Schunk H. (2007), Robot grippers, Wiley.10.1002/9783527610280Search in Google Scholar

11. Siciliano B., Khatib O. (2008), Springer handbook of robotics, Springer Verlag Berlin Heidelberg.10.1007/978-3-540-30301-5Search in Google Scholar

12. Tarnowski W. (1997), Foundations of engineering design, CAD, CAM, Wydawnictwa Naukowo-Techniczne, Warszawa.Search in Google Scholar

13. Thulesen T.N., Petersen H.G, (2016), RobWorkPhysicsEngine: A new Dynamic Simulation Engine for Manipulation Action, IEEE International Conference on Robotics and Automation (ICRA), 2060-2067.10.1109/ICRA.2016.7487354Search in Google Scholar

14. Wolf A., Steinmann R., Schunk H. (2005), Grippers In Motion, Springer Berlin Heidelberg.Search in Google Scholar

15. Wolniakowski A., Jorgensen J.A., Miatliuk K., Petersen H.G., Krüger N. (2015), Task and Context Sensitive Optimization of Gripper Design Using Dynamic Grasp Simulation, 20th International Conference on Methods and Models in Automation and Robotics, 29-34.10.1109/MMAR.2015.7283701Search in Google Scholar

16. Wolniakowski A., Miatliuk K., Gosiewski Z., Jørgensen J.A., Bodenhagen L., Petersen H.G, Krüger N. (2017), Task and Context Sensitive Gripper Design Learning Using Dynamic Grasp Simulation, Journal of Intelligent and Robotic Systems, 87(1), 15-42.10.1007/s10846-017-0492-ySearch in Google Scholar

17. Wolniakowski A., Miatliuk K., Krüger N., Rytz J.A. (2013), Automatic Evaluation of Task-Focused Parallel Jaw Gripper Design, International Conference on Simulation, Modelling and Programming for Autonomous Robots, LNCS, 8810, 450-461.10.1007/978-3-319-11900-7_38Search in Google Scholar

18. Zhang M.T., Goldberg K. (2006), Designing robot grippers: optimal edge contacts for part alignment, Robotica, 25, 341-349.10.1017/S0263574706003134Search in Google Scholar

19. Zhang T., Cheung L., Goldberg K. (2001), Shape tolerance for robot gripper jaws, IEEE/RSJ International Conference on Intelligent Robots Systems, 1782–1787.Search in Google Scholar

Recommended articles from Trend MD