Accès libre

Antimicrobial effects of Rosemary essential oil with potential use in the preservation of fresh fruits and vegetables

À propos de cet article

Citez

Al-Sereiti, M. R., Abu-Amer, K. M., & Sen, P. (1999). Pharmacology of rosemary (Rosmarinus officinalis Linn.) and its therapeutic potentials. Indian Journal of Experimental Biology, 37(2), 124–130.Search in Google Scholar

Bajpai, V. K., Baek, K.-H., & Kang, S. C. (2012). Control of Salmonella in foods by using essential oils: A review. Food Research International, 45(2), 722–734. https://doi.org/10.1016/j.foodres.2011.04.052Search in Google Scholar

Burr, T. J., Matteson, M. C., Smith, C. A., Corral-Garcia, M. R., & Huang, T.-C. (1996). Effectiveness of Bacteria and Yeasts from Apple Orchards as Biological Control Agents of Apple Scab. Biological Control, 6(2), 151–157. https://doi.org/10.1006/bcon.1996.0019Search in Google Scholar

Cavalcanti, Y. W., Almeida, L. de F. D. de, & Padilha, W. W. N. (2011). Anti-adherent activity of Rosmarinus officinalis essential oil on Candida albicans: An SEM analysis. Revista Odonto Ciência, 26(2), 139–144. https://doi.org/10.1590/S1980-65232011000200008Search in Google Scholar

Chifiriuc, C., Grumezescu, V., Grumezescu, A. M., Saviuc, C., Lazăr, V., & Andronescu, E. (2012). Hybrid magnetite nanoparticles/Rosmarinus officinalis essential oil nanobiosystem with antibiofilm activity. Nanoscale Research Letters, 7(1), 1–7. https://doi.org/10.1186/1556-276X-7-209Search in Google Scholar

Clulow, S. A., Stewart, H. E., Dashwood, E. P., & Wastie, R. L. (1995). Tuber surface microorganisms influence the susceptibility of potato tubers to late blight. Annals of Applied Biology, 126(1), 33–43. https://doi.org/10.1111/j.1744-7348.1995.tb05001Search in Google Scholar

Dowley, L. J., & O’Sullivan, E. (1991). Sporulation of Phytophthora infestans (Mont.) de Bary on the surface of diseased potatoes and tuber to tuber spread of infection during handling. Potato Research, 34(3), 295–296. https://doi.org/10.1007/BF02360502Search in Google Scholar

Escalona, V. H., Aguayo, E., & Artès, F. (2005). Overall Quality Throughout Shelf Life of Minimally Fresh Processed Fennel. Journal of Food Science, 70(1), S13–S17. https://doi.org/10.1111/j.1365-2621.2005.tb09057.xSearch in Google Scholar

Escalona, V. H., Aguayo, E., & Artés, F. (2006). Metabolic activity and quality changes of whole and fresh-cut kohlrabi (Brassica oleracea L. gongylodes group) stored under controlled atmospheres. Postharvest Biology and Technology, 41(2), 181–190. https://doi.org/10.1016/j.postharvbio.2006.04.001Search in Google Scholar

Gachkar, L., Yadegari, D., Rezaei, M., Taghizadeh, M., Astaneh, S., & Rasooli, I. (2007). Chemical and biological characteristics of Cuminum cyminum and Rosmarinus officinalis essential oils. Food Chemistry, 102(3), 898–904. https://doi.org/10.1016/j.foodchem.2006.06.035Search in Google Scholar

Garcia-Mazcorro, J. F., Pedreschi, R., Yuan, J., Kawas, J. R., Chew, B., Dowd, S. E., & Noratto, G. (2019). Apple consumption is associated with a distinctive microbiota, proteomics and metabolomics profile in the gut of Dawley Sprague rats fed a high-fat diet. PLOS ONE, 14(3), e0212586. https://doi.org/10.1371/journal.pone.0212586Search in Google Scholar

Gudmestad, N. C., Taylor, R. J., & Pasche, J. S. (2007). Management of soilborne diseases of potato. Australasian Plant Pathology, 36(2), 109–115. https://doi.org/10.1071/AP06091Search in Google Scholar

He, Y.-H., Isono, S., Shibuya, M., Tsuji, M., Adkar Purushothama, C.-R., Tanaka, K., & Sano, T. (2012). Oligo-DNA Custom Macroarray for Monitoring Major Pathogenic and Non-Pathogenic Fungi and Bacteria in the Phyllosphere of Apple Trees. PLOS ONE, 7(3), e34249. https://doi.org/10.1371/journal.pone.0034249Search in Google Scholar

Hernández, M. D., Sotomayor, J. A., Hernández, Á., & Jordán, M. J. (2016). Rosemary (Rosmarinus officinalis L.) oils. In Essential oils in food preservation, flavor and safety (pp. 677–688). Academic Press. https://doi.org/10.1016/B978-0-12-416641-7.00077-8Search in Google Scholar

Ivanovic, J., Misic, D., Zizovic, I., & Ristic, M. (2012). In vitro control of multiplication of some food-associated bacteria by thyme, rosemary and sage isolates. Food Control, 25(1), 110–116. https://doi.org/10.1016/j.foodcont.2011.10.019Search in Google Scholar

Jordán, M. J., Lax, V., Rota, M. C., Lorán, S., & Sotomayor, J. A. (2013). Effect of the phenological stage on the chemical composition, and antimicrobial and antioxidant properties of Rosmarinus officinalis L essential oil and its polyphenolic extract. Industrial Crops and Products, 48, 144–152. https://doi.org/10.1016/j.indcrop.2013.04.031Search in Google Scholar

Kačániová, M., Galovičová, L., Borotová, P., Vukovic, N. L., Vukic, M., Kunová, S., Hanus, P., Bakay, L., Zagrobelna, E., Kluz, M., & Kowalczewski, P. Ł. (2022). Assessment of Ocimum basilicum Essential Oil Anti-Insect Activity and Antimicrobial Protection in Fruit and Vegetable Quality. Plants, 11(8), 1030. https://doi.org/10.3390/plants11081030Search in Google Scholar

Koutsos, A., Lima, M., Conterno, L., Gasperotti, M., Bianchi, M., Fava, F., Vrhovsek, U., Lovegrove, J., & Tuohy, K. (2017). Effects of Commercial Apple Varieties on Human Gut Microbiota Composition and Metabolic Output Using an In Vitro Colonic Model. Nutrients, 9(6), 533. https://doi.org/10.3390/nu9060533Search in Google Scholar

Lemos, M. F., Lemos, M. F., Pacheco, H. P., Endringer, D. C., & Scherer, R. (2015). Seasonality modifies rosemary’s composition and biological activity. Industrial Crops and Products, 70, 41–47. https://doi.org/10.1016/j.indcrop.2015.02.062Search in Google Scholar

Liu, M., Liu, Y., Cao, M.-J., Liu, G.-M., Chen, Q., Sun, L., & Chen, H. (2017). Antibacterial activity and mechanisms of depolymerized fucoidans isolated from Laminaria japonica. Carbohydrate Polymers, 172, 294–305. https://doi.org/10.1016/j.carbpol.2017.05.060Search in Google Scholar

Lo Presti, M., Ragusa, S., Trozzi, A., Dugo, P., Visinoni, F., Fazio, A., Dugo, G., & Mondello, L. (2005). A comparison between different techniques for the isolation of rosemary essential oil. Journal of Separation Science, 28(3), 273–280. https://doi.org/10.1002/jssc.200400037Search in Google Scholar

Loria, R., Bukhalid, R. A., Fry, B. A., & King, R. R. (1997). Plant pathogenicity in the genus Streptomyces. Plant Disease, 81(8), 836-846. https://doi.org/10.1094/PDIS.1997.81.8.836Search in Google Scholar

Lottmann, J., Heuer, H., Smalla, K., & Berg, G. (1999). Influence of transgenic T4-lysozyme-producing potato plants on potentially beneficial plant-associated bacteria. FEMS Microbiology Ecology, 29(4), 365–377. https://doi.org/10.1111/j.1574-6941.1999.tb00627.xSearch in Google Scholar

Marinas, I., Grumezescu, A., Saviuc, C., Chifiriuc, M., Mihaiescu, D., & Lazar, V. (2012). Rosmarinus officinalis essential oil as antibiotic potentiator agains Staphylococcus aureus. Biointerface Research in Applied Chemistry, 2, 271–276.Search in Google Scholar

Martín-Belloso, O., Soliva-Fortuny, R., & Oms-Oliu, G. (2006). Fresh-cut fruits, Handbook of Fruits and Fruit Processing (Y.H. Hui (Ed.). Blackwell Publishing.Search in Google Scholar

Mohammed, M. J., Anand, U., Altemimi, A. B., Tripathi, V., Guo, Y., & Pratap-Singh, A. (2021). Phenolic Composition, Antioxidant Capacity and Antibacterial Activity of White Wormwood (Artemisia herba-alba). Plants, 10(1), 164. https://doi.org/10.3390/plants10010164Search in Google Scholar

Nguyen-the, C., & Carlin, F. (1994). The microbiology of minimally processed fresh fruits and vegetables. Critical Reviews in Food Science and Nutrition, 34(4), 371–401. https://doi.org/10.1080/10408399409527668Search in Google Scholar

Oluwatuyi, M., Kaatz, G. W., & Gibbons, S. (2004). Antibacterial and resistance modifying activity of Rosmarinus officinalis. Phytochemistry, 65(24), 3249–3254. https://doi.org/10.1016/j.phytochem.2004.10.009Search in Google Scholar

Özcan, M. M., & Chalchat, J.-C. (2008). Chemical composition and antifungal activity of rosemary Rosmarinus officinalis oil from Turkey. International Journal of Food Sciences and Nutrition, 59(7–8), 691–698. https://doi.org/10.1080/09637480701777944Search in Google Scholar

Pérombelon, M. C. M. (2002). Potato diseases caused by soft rot erwinias: An overview of pathogenesis. Plant Pathology, 51(1), 1–12. https://doi.org/10.1046/j.0032-0862.2001.Shorttitle.doc.xSearch in Google Scholar

Pinela, J., Prieto, M. A., Barreiro, M. F., Carvalho, A. M., Oliveira, M. B. P. P., Vázquez, J. A., & Ferreira, I. C. F. R. (2016). Optimization of microwave-assisted extraction of hydrophilic and lipophilic antioxidants from a surplus tomato crop by response surface methodology. Food and Bioproducts Processing, 98, 283–298. https://doi.org/10.1016/j.fbp.2016.02.002Search in Google Scholar

Pusey, P. L., Stockwell, V. O., & Mazzola, M. (2009). Epiphytic Bacteria and Yeasts on Apple Blossoms and Their Potential as Antagonists of Erwinia amylovora. Phytopathology®, 99(5), 571–581. https://doi.org/10.1094/PHYTO-99-5-0571Search in Google Scholar

Rasooli, I. (2008). Antimycotoxigenic characteristics of Rosmarinus officinalis and Trachyspermum copticum L. essential oils. International Journal of Food Microbiology, 122(1-2), 135–139. https://doi.org/10.1016/j.ijfoodmicro.2007.11.048Search in Google Scholar

Sanz, Y., Olivares, M., Moya-Pérez, Á., & Agostoni, C. (2015). Understanding the role of gut microbiome in metabolic disease risk. Pediatric Research, 77(1–2), 236–244. https://doi.org/10.1038/pr.2014.170Search in Google Scholar

Shoji, T., & Miura, T. (2014). Apple Polyphenols in Cancer Prevention. In Polyphenols in Human Health and Disease (pp. 1373–1383). Academic Press. https://doi.org/10.1016/B978-0-12-398456-2.00104-3Search in Google Scholar

Shtriker, M. G., Hahn, M., Taieb, E., Nyska, A., Moallem, U., Tirosh, O., & Madar, Z. (2018). Fenugreek galactomannan and citrus pectin improve several parameters associated with glucose metabolism and modulate gut microbiota in mice. Nutrition, 46, 134–142.e3. https://doi.org/10.1016/j.nut.2017.07.012Search in Google Scholar

Siejak, P., Smułek, W., Fathordobady, F., Grygier, A., Baranowska, H. M., Rudzińska, M., Masewicz, Ł., Jarzębska, M., Nowakowski, P. T., Makiej, A., Kazemian, P., Drobnik, P., Stachowiak, B., Jarzębski, M., & Pratap-Singh, A. (2021). Multidisciplinary Studies of Folk Medicine “Five Thieves’ Oil” (Olejek Pięciu Złodziei) Components. Molecules, 26(10), 2931. https://doi.org/10.3390/molecules26102931Search in Google Scholar

Stockwell, V. O., Johnson, K. B., Sugar, D., & Loper, J. E. (2010). Control of Fire Blight by Pseudomonas fluorescens A506 and Pantoea vagans C9-1. Applied as Single Strains and Mixed Inocula. Phytopathology®, 100(12), 1330–1339. https://doi.org/10.1094/PHYTO-03-10-0097Search in Google Scholar

Sturz, A. V., Christie, B R., Matheson, B. G., Arsenault, W. J., & Buchanan, N. A. (1999). Endophytic bacterial communities in the periderm of potato tubers and their potential to improve resistance to soil-borne plant pathogens. Plant Pathology, 48(3), 360–369. https://doi.org/10.1046/j.1365-3059.1999.00351.xSearch in Google Scholar

Tavassoli, K.S., Mousavi, S.M., Emam-Djomeh, Z. & Razavi, S.H. (2011). Chemical composition and evaluation of antimicrobial properties of Rosmarinus officinalis L. essential oil. African Journal of Biotechnology, 10(63), 13895–13899. https://doi.org/10.5897/AJB11.788Search in Google Scholar

Yashiro, E., Spear, R. N., & McManus, P. S. (2011). Culture-dependent and culture-independent assessment of bacteria in the apple phyllosphere: Apple phyllosphere bacteria. Journal of Applied Microbiology, 110(5), 1284–1296. https://doi.org/10.1111/j.1365-2672.2011.04975.xSearch in Google Scholar

Zhu, P. C. (Ed.). (2007). New Biocides Development: The Combined Approach of Chemistry and Microbiology (vol. 967). American Chemical Society. https://doi.org/10.1021/bk-2007-0967Search in Google Scholar

eISSN:
1338-5259
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, Green and Sustainable Technology