Accès libre

Effect of biochar amendment and nitrogen fertilization on soil CO2 emission during spring period

À propos de cet article

Citez

Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., ... & Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57, 401–410. https://doi.org/10.1016/j.soilbio.2012.10.02510.1016/j.soilbio.2012.10.025 Search in Google Scholar

Aamer, M., Shaaban, M., Hassan, M. U., Guoqin, H., Ying, L., Ying, T. H., ... & Peng, Z. (2020). Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. Journal of environmental management, 255, 109891. https://doi.org/10.1016/j.jenvman.2019.10989110.1016/j.jenvman.2019.10989132063300 Search in Google Scholar

Berek, A. K., & Hue, N. (2016). Characterization of Biochars and Their Use as an Amendment to Acid Soils. Soil Science, 181, 412–454. 10.1097/SS.000000000000017710.1097/SS.0000000000000177 Search in Google Scholar

Bovsun, M.A., Nesterova, O.V., Semal, V.A., & Sakara, N.A. (2021). The influence of the biochar application on the CO2 emission from Luvic Anthrosols in the south of Primorsky region (Russian Far East). Earth and Environmental Science, 862, 012091. https://iopscience.iop.org/article/10.1088/1755-1315/862/1/01209110.1088/1755-1315/862/1/012091 Search in Google Scholar

Cross, A., & Sohi, S.P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem., 43, 2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.01610.1016/j.soilbio.2011.06.016 Search in Google Scholar

Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., ... & Julson, J. L. (2014). Phosphorus sorption and availability from biochars and soil/B iochar mixtures. CLEAN–Soil, Air, Water, 42(5), 626–634. https://doi.org/10.1002/clen.20130008910.1002/clen.201300089 Search in Google Scholar

DeLuca, T. H., & Sala, A. (2006). Frequent fire alters nitrogen transformations in pondersoa pine stands of the inland northwest. Ecology, 87, 2511–2522. https://doi.org/10.1016/j.scitotenv.2020.13763610.1016/j.scitotenv.2020.13763632172102 Search in Google Scholar

Elder, W. J., & Lal, R. (2008). Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil & Tillage Research, 98(1), 45–55. https://doi.org/10.1016/j.still.2007.10.00310.1016/j.still.2007.10.003 Search in Google Scholar

Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil biology and Biochemistry, 45, 113–124. https://doi.org/10.1016/j.soilbio.2011.10.01210.1016/j.soilbio.2011.10.012 Search in Google Scholar

Karim, M. R., Halim, M. A., Gale, N. V., & Thomas, S. C. (2020). Biochar effects on soil physiochemical properties in degraded managed ecosystems in northeastern Bangladesh. Soil Systems, 4(4), 69. https://doi.org/10.3390/soilsystems404006910.3390/soilsystems4040069 Search in Google Scholar

Liao, W., & Thomas, S. C. (2019). Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Systems, 3(1), 14. https://doi.org/10.3390/soilsystems301001410.3390/soilsystems3010014 Search in Google Scholar

Lopes de Gerenyu, V.O., Kurganova, I.N., & Kudeyarov, V.N. (2005). Effect of soil temperature and moisture on СO2 evolution rate of cultivated Phaeozem: analysis of a long-term field experiment. Plant Soil Environ., 51, 213–2019. https://www.agriculturejournals.cz/publicFiles/50959.pdf10.17221/3576-PSE Search in Google Scholar

Spokas, K. A., Novak, J. M., & Venterea, R. T. (2012). Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil, 350, 35–42. https://doi.org/10.1007/s11104-011-0930-810.1007/s11104-011-0930-8 Search in Google Scholar

Steiner, C., Das, K.C., Garcia, M., Forseter, B., & Zech, W. (2008). Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthinc Ferralsol. Pedobiologia, 51, 359–366. https://doi.org/10.1016/j.pedobi.2007.08.00210.1016/j.pedobi.2007.08.002 Search in Google Scholar

Ullah, S., Liang, H., Ali, I., Zhao, Q., Iqbal, A., Wei, S., ... & Jiang, L. (2020). Biochar coupled with contrasting nitrogen sources mediated changes in carbon and nitrogen pools, microbial and enzymatic activity in paddy soil. Journal of Saudi Chemical Society, 24(11), 835–849. https://doi.org/10.1016/j.jscs.2020.08.00810.1016/j.jscs.2020.08.008 Search in Google Scholar

Xiong, J., Yu, R., Islam, E., Zhu, F., Zha, J., & Sohail, M.I. (2020). Effect of Biochar on Soil Temperature under High Soil Surface Temperature in Coal Mined Arid and Semiarid Regions. Sustainability, 12, 8238. https://doi.org/10.3390/su1219823810.3390/su12198238 Search in Google Scholar

eISSN:
1338-5259
Langue:
Anglais
Périodicité:
2 fois par an
Sujets de la revue:
Industrial Chemistry, Green and Sustainable Technology