Open Access

Effect of biochar amendment and nitrogen fertilization on soil CO2 emission during spring period


Cite

Ameloot, N., De Neve, S., Jegajeevagan, K., Yildiz, G., Buchan, D., Funkuin, Y. N., ... & Sleutel, S. (2013). Short-term CO2 and N2O emissions and microbial properties of biochar amended sandy loam soils. Soil Biology and Biochemistry, 57, 401–410. https://doi.org/10.1016/j.soilbio.2012.10.02510.1016/j.soilbio.2012.10.025 Search in Google Scholar

Aamer, M., Shaaban, M., Hassan, M. U., Guoqin, H., Ying, L., Ying, T. H., ... & Peng, Z. (2020). Biochar mitigates the N2O emissions from acidic soil by increasing the nosZ and nirK gene abundance and soil pH. Journal of environmental management, 255, 109891. https://doi.org/10.1016/j.jenvman.2019.10989110.1016/j.jenvman.2019.10989132063300 Search in Google Scholar

Berek, A. K., & Hue, N. (2016). Characterization of Biochars and Their Use as an Amendment to Acid Soils. Soil Science, 181, 412–454. 10.1097/SS.000000000000017710.1097/SS.0000000000000177 Search in Google Scholar

Bovsun, M.A., Nesterova, O.V., Semal, V.A., & Sakara, N.A. (2021). The influence of the biochar application on the CO2 emission from Luvic Anthrosols in the south of Primorsky region (Russian Far East). Earth and Environmental Science, 862, 012091. https://iopscience.iop.org/article/10.1088/1755-1315/862/1/01209110.1088/1755-1315/862/1/012091 Search in Google Scholar

Cross, A., & Sohi, S.P. (2011). The priming potential of biochar products in relation to labile carbon contents and soil organic matter status. Soil Biol. Biochem., 43, 2127–2134. https://doi.org/10.1016/j.soilbio.2011.06.01610.1016/j.soilbio.2011.06.016 Search in Google Scholar

Chintala, R., Schumacher, T. E., McDonald, L. M., Clay, D. E., Malo, D. D., Papiernik, S. K., ... & Julson, J. L. (2014). Phosphorus sorption and availability from biochars and soil/B iochar mixtures. CLEAN–Soil, Air, Water, 42(5), 626–634. https://doi.org/10.1002/clen.20130008910.1002/clen.201300089 Search in Google Scholar

DeLuca, T. H., & Sala, A. (2006). Frequent fire alters nitrogen transformations in pondersoa pine stands of the inland northwest. Ecology, 87, 2511–2522. https://doi.org/10.1016/j.scitotenv.2020.13763610.1016/j.scitotenv.2020.13763632172102 Search in Google Scholar

Elder, W. J., & Lal, R. (2008). Tillage effects on gaseous emissions from an intensively farmed organic soil in North Central Ohio. Soil & Tillage Research, 98(1), 45–55. https://doi.org/10.1016/j.still.2007.10.00310.1016/j.still.2007.10.003 Search in Google Scholar

Jones, D. L., Rousk, J., Edwards-Jones, G., DeLuca, T. H., & Murphy, D. V. (2012). Biochar-mediated changes in soil quality and plant growth in a three year field trial. Soil biology and Biochemistry, 45, 113–124. https://doi.org/10.1016/j.soilbio.2011.10.01210.1016/j.soilbio.2011.10.012 Search in Google Scholar

Karim, M. R., Halim, M. A., Gale, N. V., & Thomas, S. C. (2020). Biochar effects on soil physiochemical properties in degraded managed ecosystems in northeastern Bangladesh. Soil Systems, 4(4), 69. https://doi.org/10.3390/soilsystems404006910.3390/soilsystems4040069 Search in Google Scholar

Liao, W., & Thomas, S. C. (2019). Biochar particle size and post-pyrolysis mechanical processing affect soil pH, water retention capacity, and plant performance. Soil Systems, 3(1), 14. https://doi.org/10.3390/soilsystems301001410.3390/soilsystems3010014 Search in Google Scholar

Lopes de Gerenyu, V.O., Kurganova, I.N., & Kudeyarov, V.N. (2005). Effect of soil temperature and moisture on СO2 evolution rate of cultivated Phaeozem: analysis of a long-term field experiment. Plant Soil Environ., 51, 213–2019. https://www.agriculturejournals.cz/publicFiles/50959.pdf10.17221/3576-PSE Search in Google Scholar

Spokas, K. A., Novak, J. M., & Venterea, R. T. (2012). Biochar’s role as an alternative N-fertilizer: ammonia capture. Plant Soil, 350, 35–42. https://doi.org/10.1007/s11104-011-0930-810.1007/s11104-011-0930-8 Search in Google Scholar

Steiner, C., Das, K.C., Garcia, M., Forseter, B., & Zech, W. (2008). Charcoal and smoke extract stimulate the soil microbial community in a highly weathered xanthinc Ferralsol. Pedobiologia, 51, 359–366. https://doi.org/10.1016/j.pedobi.2007.08.00210.1016/j.pedobi.2007.08.002 Search in Google Scholar

Ullah, S., Liang, H., Ali, I., Zhao, Q., Iqbal, A., Wei, S., ... & Jiang, L. (2020). Biochar coupled with contrasting nitrogen sources mediated changes in carbon and nitrogen pools, microbial and enzymatic activity in paddy soil. Journal of Saudi Chemical Society, 24(11), 835–849. https://doi.org/10.1016/j.jscs.2020.08.00810.1016/j.jscs.2020.08.008 Search in Google Scholar

Xiong, J., Yu, R., Islam, E., Zhu, F., Zha, J., & Sohail, M.I. (2020). Effect of Biochar on Soil Temperature under High Soil Surface Temperature in Coal Mined Arid and Semiarid Regions. Sustainability, 12, 8238. https://doi.org/10.3390/su1219823810.3390/su12198238 Search in Google Scholar

eISSN:
1338-5259
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Industrial Chemistry, Green and Sustainable Technology