Accès libre

The Influence of Injection Mode and Spray Distance on Wear Resistance of Al2O3+13 wt.% TiO2 coatings

,  et   
14 sept. 2024
À propos de cet article

Citez
Télécharger la couverture

Bolelli G, Cannillo V, Lusvarghi L, Manfredini T. Wear behaviour of thermally sprayed ceramic oxide coatings. Wear 2006;261. https://doi.org/10.1016/j.wear.2006.03.023. Search in Google Scholar

Mayrhofer PH, Mitterer C, Hultman L, Clemens H. Microstructural design of hard coatings. Progress in Materials Science 2006;51. https://doi.org/10.1016/j.pmatsci.2006.02.002. Search in Google Scholar

Bakan E, Vaßen R. Ceramic Top Coats of Plasma-Sprayed Thermal Barrier Coatings: Materials, Processes, and Properties. Journal of Thermal Spray Technology 2017;26. https://doi.org/10.1007/s11666-017-0597-7. Search in Google Scholar

Heimann RB. Plasma-Spray Coating: Principles and Applications. 2007. https://doi.org/10.1002/9783527614851. Search in Google Scholar

Boulos MI, Fauchais PL, Heberlein JVR. Thermal Spray Fundamentals: From Powder to Part, Second Edition. 2021. https://doi.org/10.1007/978-3-030-70672-2. Search in Google Scholar

Pawlowski L. The Science and Engineering of Thermal Spray Coatings: Second Edition. 2008. https://doi.org/10.1002/9780470754085. Search in Google Scholar

Nie X, Meletis EI, Jiang JC, Leyland A, Yerokhin AL, Matthews A. Abrasive wear/corrosion properties and TEM analysis of Al2O3 coatings fabricated using plasma electrolysis. Surface and Coatings Technology 2002;149. https://doi.org/10.1016/S0257-8972(01)01453-0. Search in Google Scholar

Yilmaz R, Kurt AO, Demir A, Tatli Z. Effects of TiO2 on the mechanical properties of the Al2O3-TiO2 plasma sprayed coating. Journal of the European Ceramic Society 2007;27. https://doi.org/10.1016/j.jeurceramsoc.2006.04.099. Search in Google Scholar

Wang Y, Jiang S, Wang M, Wang S, Xiao TD, Strutt PR. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 2000;237:176–85. https://doi.org/10.1016/S0043-1648(99)00323-3. Search in Google Scholar

Musalek R, Tesar T, Dudik J, Medricky J, Cech J, Lukac F. Cohesion of Dissimilar Splats in Hybrid Plasma-Sprayed Coatings: A Case Study for Al2O3-TiO2. Journal of Thermal Spray Technology 2022;31. https://doi.org/10.1007/s11666-022-01401-4. Search in Google Scholar

Łatka L, Michalak M, Szala M, Walczak M, Sokołowski P, Ambroziak A. Influence of 13 wt% TiO2 content in alumina-titania powders on microstructure, sliding wear and cavitation erosion resistance of APS sprayed coatings. Surface and Coatings Technology 2021;410:126979. https://doi.org/10.1016/J.SURFCOAT.2021.126979. Search in Google Scholar

Goberman D, Sohn YH, Shaw L, Jordan E, Gell M. Microstructure development of Al2O3–13wt.%TiO2 plasma sprayed coatings derived from nanocrystalline powders. Acta Materialia 2002;50:1141–52. https://doi.org/10.1016/S1359-6454(01)00414-1. Search in Google Scholar

Palanivelu R, Kumar AR. Scratch and wear behaviour of plasma sprayed nano ceramics bilayer Al2O3-13 wt%TiO2/hydroxyapatite coated on medical grade titanium substrates in SBF environment. Appl Surf Sci 2014;315:372–9. https://doi.org/10.1016/J.APSUSC.2014.07.167. Search in Google Scholar

Nowakowska M, Łatka L, Sokołowski P, Szala M, Toma FL, Walczak M. Investigation into microstructure and mechanical properties effects on sliding wear and cavitation erosion of Al2O3–TiO2 coatings sprayed by APS, SPS and S-HVOF. Wear 2022;508–509. https://doi.org/10.1016/j.wear.2022.204462. Search in Google Scholar

Vardelle M, Vardelle A, Fauchais P. Spray parameters and particle behavior relationships during plasma spraying. Journal of Thermal Spray Technology 1993;2. https://doi.org/10.1007/BF02647426. Search in Google Scholar

Jafarzadeh K, Valefi Z, Ghavidel B. The effect of plasma spray parameters on the cavitation erosion of Al2O3–TiO2 coatings. Surface and Coatings Technology 2010;205:1850–5. https://doi.org/10.1016/J.SURFCOAT.2010.08.044. Search in Google Scholar

Abbas RA, Ajeel SA, Ali Bash MA, Kadhim MJ. Effect of plasma spray distance on the features and hardness reliability of YSZ thermal barrier coating. Materials Today Proceedings 2021;42. https://doi.org/10.1016/j.matpr.2020.12.578. Search in Google Scholar

Song EP, Ahn J, Lee S, Kim NJ. Effects of critical plasma spray parameter and spray distance on wear resistance of Al2O3-8 wt.%TiO2 coatings plasma-sprayed with nanopowders. Surface and Coatings Technology 2008;202. https://doi.org/10.1016/j.surfcoat.2008.01.002. Search in Google Scholar

Vardelle M, Fauchais P, Vardelle A, Li KI, Dussoubs B, Themelis NJ. Controlling particle injection in plasma spraying. Journal of Thermal Spray Technology 2001;10:267–84. https://doi.org/10.1361/105996301770349367. Search in Google Scholar

Liu SH, Trelles JP, Li CJ, Li CX, Guo HB. A review and progress of multiphase flows in atmospheric and low pressure plasma spray advanced coating. Materials Today Physics 2022;27:100832. https://doi.org/10.1016/J.MTPHYS.2022.100832. Search in Google Scholar

Martínez-Villegas I, Mora-García AG, Ruiz-Luna H, Mckelliget J, Poblano-Salas CA, Muñoz-Saldaña J, et al. Swirling Effects in Atmospheric Plasma Spraying Process: Experiments and Simulation. Coatings 2020;10:388. https://doi.org/10.3390/coatings10040388. Search in Google Scholar

Łatka L, Michalak M, Jonda E. Atmospheric Plasma Spraying of Al2O3 + 13% TiO2 Coatings Using External and Internal Injection System. Advances in Materials Science 2019;19. https://doi.org/10.2478/adms-2019-0018. Search in Google Scholar

ASTM International. ASTM G99-19: Standard Test Method for Wear Testing with a Pin-on-Disk Apparatus. Book of Standards 2017. https://doi.org/10.1520/G0099-17. Search in Google Scholar

Michalak M, Łatka L, Sokołowski P, Niemiec A, Ambroziak A. The Microstructure and Selected Mechanical Properties of Al2O3+13 wt % TiO2 Plasma Sprayed Coatings. Coatings 2020;10. https://doi.org/10.3390/coatings10020173. Search in Google Scholar

ASTM International. ASTM E2109-01: Standard Test Methods for Determining Area Percentage Porosity in Thermal Sprayed Coatings. Book of Standards 2021. https://doi.org/10.1520/E2109-01R21. Search in Google Scholar

EN ISO 4516: Metallic and other Inorganic Coatings—Vickers and Knoop Microhardness Tests; Swiss Association for Standardization. Winterthur, Switzerland: 2004. Search in Google Scholar

Lancaster JK. The influence of substrate hardness on the formation and endurance of molybdenum disulphide films. Wear 1967;10:103–17. https://doi.org/10.1016/0043-1648(67)90082-8. Search in Google Scholar

Xue M, Lai X, Wang J, Liu S, Wang X, Jiang K. Microstructure and high-temperature sintering properties of APS coatings prepared from spherical thin-walled hollow-shell powders. Ceramics International 2022;48:31652–60. https://doi.org/10.1016/J.CERAMINT.2022.07.086. Search in Google Scholar

Kulkarni A, Vaidya A, Goland A, Sampath S, Herman H. Processing effects on porosity-property correlations in plasma sprayed yttria-stabilized zirconia coatings. Materials Science and Engineering: A 2003;359:100–11. https://doi.org/10.1016/S0921-5093(03)00342-3. Search in Google Scholar

Mutter M, Mauer G, Mücke R, Guillon O, Vaßen R. Correlation of splat morphologies with porosity and residual stress in plasma-sprayed YSZ coatings. Surface and Coatings Technology 2017;318:157–69. https://doi.org/10.1016/J.SURFCOAT.2016.12.061. Search in Google Scholar

Sampath S, Jiang XY, Matejicek J, Leger AC, Vardelle A. Substrate temperature effects on splat formation, microstructure development and properties of plasma sprayed coatings Part I: Case study for partially stabilized zirconia. Materials Science and Engineering: A 1999;272:181–8. https://doi.org/10.1016/S0921-5093(99)00459-1. Search in Google Scholar

Mauer G, Vaßen R, Stöver D, Kirner S, Marqués J-L, Zimmermann S, et al. Improving Powder Injection in Plasma Spraying by Optical Diagnostics of the Plasma and Particle Characterization. Journal of Thermal Spray Technology 2011;20:3–11. https://doi.org/10.1007/s11666-010-9577-x. Search in Google Scholar

Odhiambo JG, Li W, Zhao Y, Li C. Porosity and Its Significance in Plasma-Sprayed Coatings. Coatings 2019;9:460. https://doi.org/10.3390/coatings9070460. Search in Google Scholar

Zhou J, Sun K, Huang S, Cai W, Wei Y, Meng L, et al. Fabrication and Property Evaluation of the Al2O3-TiO2 Composite Coatings Prepared by Plasma Spray. Coatings 2020;10:1122. https://doi.org/10.3390/coatings10111122. Search in Google Scholar

Kwon H, Yoo YW, Park Y, Nam UH, Byon E. Effect of TiO2 on mechanical and thermal properties of Al2O3-based coating via atmospheric plasma spraying. Journal of Asian Ceramic Societies 2023;11. https://doi.org/10.1080/21870764.2023.2203991. Search in Google Scholar

Shen Y, Tao H, Lin Y, Zeng X, Wang T, Tao J, et al. Fabrication and Wear Resistance of TiO2/Al2O3 Coatings by Micro-arc Oxidation. Rare Metal Materials and Engineering 2017;46:23–7. https://doi.org/10.1016/S1875-5372(17)30071-1. Search in Google Scholar

Jeong DH, Erb U, Aust KT, Palumbo G. The relationship between hardness and abrasive wear resistance of electrodeposited nanocrystalline Ni–P coatings. Scripta Materialia 2003;48:1067–72. https://doi.org/10.1016/S1359-6462(02)00633-4. Search in Google Scholar

Wang Y, Jiang S, Wang M, Wang S, Xiao TD, Strutt PR. Abrasive wear characteristics of plasma sprayed nanostructured alumina/titania coatings. Wear 2000;237:176–85. https://doi.org/10.1016/S0043-1648(99)00323-3. Search in Google Scholar

Fletcher DI, Corteen J, Wilby A. Rough surface rolling contact fatigue crack stress intensity factor calculation for modern rail steels. Wear 2024;540–541:205231. https://doi.org/10.1016/J.WEAR.2023.205231. Search in Google Scholar

Rabinowicz E, Dunn LA, Russell PG. A study of abrasive wear under three-body conditions. Wear 1961;4. https://doi.org/10.1016/0043-1648(61)90002-3. Search in Google Scholar

Klyatskina E, Espinosa-Fernández L, Darut G, Segovia F, Salvador M D, Montavon G, et al. Sliding Wear Behavior of Al 2 O 3-TiO2 Coatings Fabricated by the Suspension Plasma Spraying Technique. Tribology Letters 2015;59. https://doi.org/10.1007/s11249-015-0530-5. Search in Google Scholar

Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Sciences des matériaux, Matériaux fonctionnels et intelligents