Accès libre

Valorization of a Steel Industrial Co-Product for the Development of Alkali-Activated Materials: Effect of Curing Environments

À propos de cet article

Citez

Wang W.C., Wang H.Y., Tsai H.C.: Study on engineering properties of alkali-activated ladle furnace slag geopolymer. Construction and Building Materials 123 (2016) 800–805. Search in Google Scholar

Gonçalves M., Vilarinho I.S., Capela M., Caetano A., Novais R.M., Labrincha J.A., Seabra M.P.: Waste-Based One-Part Alkali Activated Materials. Materials 14 (2021), 2911. Search in Google Scholar

Omur T., Kabay N., Miyan N., Ozkan H., Ozkan C.: The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. Journal of Building Engineering 58 (2022) 104998. Search in Google Scholar

Davidovits J.: Geopolymer: chemistry and application. J. Davidovits [ed.], Institut Géopolymère, Saint-Quentin, France, 2008. Search in Google Scholar

Reddy M.S., Dinakar P., Rao B.H.: Mix design development of fly ash and ground granulated blast furnace slag based geopolymer concrete. Journal of Building Engineering 20 (2018) 712–722. Search in Google Scholar

Duxson P., Fernandez-Jimenez A., Provis J.L., Lukey G.C., Palomo A., Deventer J.: Geopolymer technology: the current state of the art. Journal of Materials Science 42 (9) (2007) 2917–2933. Search in Google Scholar

Oderji S.Y., Chen B., Ahmad M.R., Shah S.F.A.: Fresh and hardened properties of one-part fly ash-based geopolymer binders cured at room temperature: Effect of slag and alkali activators. Journal of Cleaner Production 225 (2019) 1–10. Search in Google Scholar

An Q., Pan H., Zhao Q., Wang D.: Strength development and microstructure of sustainable geopolymers made from alkali-activated ground granulated blast-furnace slag, calcium carbide residue, and red mud. Construction and Building Materials 356 (2022) 129279. Search in Google Scholar

Garcia-Lodeiro I., Palomo A., Fernández-Jiménez A., Macphee D.E.: Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O–CaO–Al2O3–SiO2–H2O. Cement and Concrete Research 41 (2011) 923–931. Search in Google Scholar

Davidovits J., Geopolymers inorganic polymeric new materials. Journal of Thermal Analysis and Calorimetry 37 (1991) 1633–1656. Search in Google Scholar

Abdollahnejad Z., Pacheco-Torgal F., De Aguiar J.B.: Eco-concrete: One-part geopolymer mixes. Proce. TRF Senior Research Scholars Progress II, Khon Kaen, Thailand, 2013. pp. 1-7 Search in Google Scholar

Askarian M., Tao Z., Adam G., Samali B.: Mechanical properties of ambient cured one-part hybrid OPC-geopolymer concrete. Construction and Building Materials 186 (2018) 330–337. Search in Google Scholar

Askarian M., Tao Z., Samali B., Adam G., Shuaibu R.: Mix composition and characterisation of one-part geopolymers with different activators. Construction and Building Materials 225 (2019) 526–537. Search in Google Scholar

Nematollahi B., Sanjayan J., Qiu J., Yang E.: Micromechanics-based investigation of a sustainable ambient temperature cured one-part strain hardening geopolymer composite. Construction and Building Materials 131 (2017) 552–563. Search in Google Scholar

Sturm P., Gluth G.J.G., Brouwers H.J.H., Kühne H.C.: Synthesizing one-part geopolymers from rice husk ash. Construction and Building Materials 124 (2016) 961–966. Search in Google Scholar

Karam R., Paris M., Deneele D., Wattez T., Cyr M., Bulteel D.: Effect of sediment incorporation on the reactivity of alkali-activated GGBFS systems. Materials and Structure (2021) 54 118. Search in Google Scholar

Marvila M.T, De Azevedo A.R.G, Oliveira L.B, Xavier G.D.C, Fontes Vieira C.M. : Mechanical, physical and durability properties of activated alkali cement based on blast furnace slag as a function of %Na2O. Case Studies in Construction Materials 15 (2021) e00723. Search in Google Scholar

18. Provis J.L., Bernal S.A.: Geopolymers and Related Alkali-Activated Materials. Annual Review of Materials Research 44 (2014) 299–327. Search in Google Scholar

Provis J.L., Van Deventer J.S.J., Alkali Activated Materials. State-of-the-Art-Report, J.L. Provis and J.S.J. Van Deventer [eds.], New York London, 2014. Search in Google Scholar

Guo W., Zhao Q., Sun Y., Xue C., Bai Y., Shi Y.: Effects of various curing methods on the compressive strength and microstructure of blast furnace slag-fly ash-based cementitious material activated by alkaline solid wastes. Construction and Building Materials 357 (2022) 129397. Search in Google Scholar

Suwan T., Fan M.: Effect of manufacturing process on the mechanisms and mechanical properties of fly ash-based geopolymer in ambient curing temperature. Materials and Manufacturing Processes 32 (2017) 461–467. Search in Google Scholar

Peng M.X., Wang Z.H., Xiao Q.G., Song F., Xie W., Yu L.C., Huang H.W., Yi S.J.: Effects of alkali on one-part alkali-activated cement synthesized by calcining bentonite with dolomite and Na2CO3. Applied Clay Science 139 (2017) 64–71. Search in Google Scholar

Van Deventer J.S.J., Feng D., Duxson P.: Dry mix cement composition, methods and system involving same. Patent N° 7,691,198 B2, USA, 2010. Search in Google Scholar

Li X., Wang Z., Jiao Z.: Influence of curing on the strength development of calcium-containing geopolymer mortar. Materials 6 (2013) 5069–5076. Search in Google Scholar

O’Connor S.J., MacKenzie K.J.D.: Synthesis, characterization and thermal behavior of lithium aluminosilicate inorganic polymers. Journal of Materials Science 45 (2010) 3707–3713. Search in Google Scholar

Jun Y., Han S.H., Kim J.H.: Early-age strength of CO2 cured alkali-activated blast furnace slag pastes. Construction and Building Materials 288 (2021) 123075. Search in Google Scholar

Manojsuburam E., Sakthivel E., Jayanthimani E.: A study on the mechanical properties of alkali activated ground granulated blast furnace slag and fly ash concrete, Materials Today: Proceedings 62 (2022) 1761–1764. Search in Google Scholar

Marsh A.T.M., Yue Z., Dhandapani Y., Button K., Adu-Amankwah S., Bernal S.A.: Influence of limestone addition on sodium sulphate activated blast furnace slag cements. Construction and Building Materials 360 (2022) 129527. Search in Google Scholar

Bilici S., Kabay N., Miyan N., Omur T., Ozkan H.: Effect of washing aggregate sludge waste on the properties of alkali-activated blast furnace slag. Journal of Building Engineering 63 (2023) 105527. Search in Google Scholar

Yon MS., Karatas M.: Evaluation of the mechanical properties and durability of self-compacting alkali-activated mortar made from boron waste and granulated blast furnace slag. Journal of Building Engineering 61 (2022) 105263. Search in Google Scholar

Duan W., Zhuge Y, Chow W.K.C, Keegan A., Liu Y., Siddique R.: Mechanical performance and phase analysis of an eco-friendly alkali-activated binder made with sludge waste and blast-furnace slag. Journal of Cleaner Production 374 (2022) 134024. Search in Google Scholar

Wang Q., Sun S., Yao G., Wang Z., Lyu X.: Preparation and characterization of an alkali-activated cementitious material with blast-furnace slag, soda sludge, and industrial gypsum. Construction and Building Materials 340 (2022) 127735. Search in Google Scholar

Adediran A., Yliniemi J., Lemougna P.N., Perumal P., Illikainen M.: Recycling high volume Fe-rich fayalite slag in blended alkali-activated materials: Effect of ladle and blast furnace slags on the fresh and hardened state properties. Journal of Building Engineering 63 (2023) 105436. Search in Google Scholar

Huang Z., Wang Q., Lu J.: The effects of cations and concentration on reaction mechanism of alkali-activated blast furnace ferronickel slag. Composites Part B 236 (2022) 109825. Search in Google Scholar

Sadeghian G., Behfarnia K., Teymouri M.: Drying shrinkage of one-part alkali-activated slag concrete. Journal of Building Engineering 51 (2022) 104263. Search in Google Scholar

Huang D., Yuan Q., Chen P., Tian X., Peng H.: Effect of activator properties on drying shrinkage of alkali-activated fly ash and slag. Journal of Building Engineering 62 (2022) 105341. Search in Google Scholar

Ou Z., Feng R., Li F., Liu G., Li N.: Development of drying shrinkage model for alkali-activated slag concrete. Construction and Building Materials 323 (2022) 126556. Search in Google Scholar

NF EN-196-3: Méthodes d’essai des ciments - Partie 3: Détermination du temps de prise et de la stabilité, septembre 2017. Search in Google Scholar

NF EN1015-11: Méthodes d’essai des mortiers pour maçonnerie - Partie 11: Détermination de la résistance en flexion et en compression du mortier durci. Novembre 2019. Search in Google Scholar

NF P18-459 : Béton - Essai pour béton durci - Essai de porosité et de masse volumique. Search in Google Scholar

Oualit M., Irekti A., Sarri A. Influence des conditions de durcissement et le taux d’alcalins sur les performances mécaniques des matériaux alcali-activés à base du laitier de haut fourneau. Matériaux & Techniques 110 (2022) 202. Search in Google Scholar

Gijbelsa K., Pontikesb Y., Samync P., Schreursa S., Schroeyersa W.: Effect of NaOH content on hydration, mineralogy, porosity and strength in alkali/sulfate-activated binders from ground granulated blast furnace slag and phosphogypsum. Cement and Concrete Research 132 (2020) 106054. Search in Google Scholar

Shi C., Roy D., Krivenko P.: Alkali-Activated Cements and Concretes. C. Shi, D. Roy, P. Krinvenko [ed.]. CRC Press, UK. 2006. Search in Google Scholar

Fernández-Jiménez A., Palomo J.G., Puertas F.: Alkali-activated slag mortars: Mechanical strength behaviour. Cement and Concrete Research 29(8) (1999), 1313–1321 Search in Google Scholar

Palomo A., Maltseva O., Garcia-Lodeiro I., Fernández-Jiménez A.: Portland versus alkaline cement: Continuity or clean break: A key decision for global sustainability. Frontiers in Chemistry (2021) 9 705475. Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials