Accès libre

Physical and Mechanical Properties of Dune Sand Mortar Reinforced with Recycled Pet Fiber: An Experimental Study

À propos de cet article

Citez

1. Y.W. Choi, D.J. Moon, Y.J. Kim, M. Lachemi, Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles, Construction and Building Materials. 23 (2009) 2829–2835.10.1016/j.conbuildmat.2009.02.036 Search in Google Scholar

2. K. Hannawi, S. Kamali-Bernard, W. Prince, Physical and mechanical properties of mortars containing PET and PC waste aggregates, Waste Management. 30 (2010) 2312–2320.10.1016/j.wasman.2010.03.02820417085 Search in Google Scholar

3. J.M.L. Reis, E.P. Carneiro, Evaluation of PET waste aggregates in polymer mortars, Construction and Building Materials. 27 (2012) 107–111.10.1016/j.conbuildmat.2011.08.020 Search in Google Scholar

4. S. Akçaozoǧlu, C. Ulu, Recycling of waste PET granules as aggregate in alkaliactivated blast furnace slag/metakaolin blends, Construction and Building Materials. 58 (2014) 31–37.10.1016/j.conbuildmat.2014.02.011 Search in Google Scholar

5. F.A. Spósito, R.T. Higuti, M.M. Tashima, J.L. Akasaki, J.L.P. Melges, C.C. Assunção, M. Bortoletto, R.G. Silva, C.F. Fioriti, Incorporation of PET wastes in rendering mortars based on Portland cement/hydrated lime, Journal of Building Engineering. 32 (2020) 101506.10.1016/j.jobe.2020.101506 Search in Google Scholar

6. M. Hacini, A.S. Benosman, N.K. Tani, M. Mouli, Y. Senhadji, A. Badache, N. Latroch, Utilization and assessment of recycled Polyethylene Terephthalate strapping bands as lightweight aggregates in Eco-efficient composite mortars. Construction and Building Materials. 270 (2021) 12142710.1016/j.conbuildmat.2020.121427 Search in Google Scholar

7. Y. Choi, D. Moon, J. Chung, S. Cho, Effects of waste PET bottles aggregate on the properties of concrete, Cement and Concrete Research. 35 (2005) 776–781.10.1016/j.cemconres.2004.05.014 Search in Google Scholar

8. A. Sadrmomtazi, S. Dolati-Milehsara, O. Lot, A. Sadeghi-Nik, The combined effects of waste Polyethylene Terephthalate (PET) particles and pozzolanic materials on the properties of self- compacting concrete, Journal of Cleaner Production. 112 (2016) 2363–2373.10.1016/j.jclepro.2015.09.107 Search in Google Scholar

9. E. Rahmani, M. Dehestani, M.H.A. Beygi, H. Allahyari, I.M. Nikbin, On the mechanical properties of concrete containing waste PET particles, Construction and Building Materials. 47 (2013) 1302–130810.1016/j.conbuildmat.2013.06.041 Search in Google Scholar

10. F. Fraternali, S. Spadea, V.P. Berardi, Effects of recycled PET fibres on the mechanical properties and seawater curing of Portland cement-based concretes, Construction and Building Materials. 61 (2014) 293–30210.1016/j.conbuildmat.2014.03.019 Search in Google Scholar

11. R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow. Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete. Journal of Building Engineering. 57 (2022) 104948A. Search in Google Scholar

12. H. Alani, M. A.M. Johari, A.T. Noaman, N.M. Bunnori, T.A. Majid, Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete, Construction and Building Materials. 331 (2022) 127306. Search in Google Scholar

13. A.A. Mohammed, A.A.F. Rahim, Experimental behavior and analysis of high strength concrete beams reinforced with PET waste fiber, Construction and Building Materials. 244 (2020) 118350.10.1016/j.conbuildmat.2020.118350 Search in Google Scholar

14. L.A. Pereira de Oliveira, João P. Castro-Gomes, Physical and mechanical behaviour of recycled PET fibre reinforced mortar, Construction and Building Materials. 25 (2011) 1712-1717.10.1016/j.conbuildmat.2010.11.044 Search in Google Scholar

15. M. Małek, M. Jackowski, W. Łasica, M. Kadela, Characteristics of recycled polypropylene fibers as an addition to concrete fabrication based on Portland cement, Materials. 13 (2020) 1827.10.3390/ma13081827 Search in Google Scholar

16. F. Alrshoudi, H. Mohammadhosseini, M.M. Tahir, R. Alyousef, H. Alghamdi, Y. Alharbi, A. Alsaif, Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers, Journal of Building Engineering. 32 (2020) 101522.10.1016/j.jobe.2020.101522 Search in Google Scholar

17. J. Thorneycroft, J. Orr, P. Savoikar, R. Ball, Performance of structural concrete with recycled plastic waste as a partial replacement for sand, Construction and Building Materials. 161 (2018) 63–69.10.1016/j.conbuildmat.2017.11.127 Search in Google Scholar

18. I. Almeshal, B.A. Tayeh, R. Alyousef, H. Alabduljabbar, A.M. Mohamed, Ecofriendly concrete containing recycled plastic as partial replacement for sand, Journal of Materials Research and Technology. 9 (3) (2020) 4631–4643.10.1016/j.jmrt.2020.02.090 Search in Google Scholar

19. AFNOR standards organisation. Méthodes d’essais des ciments - Partie 1: détermination des résistances mécaniques. NF EN 196-1 (2006). Search in Google Scholar

20. S. Guettala, B. Mezghiche, M. Mellas, Influence of addition dune sand powder to cement, on the properties physical-mechanical and deformability of concrete, Asian Journal of Civil Engineering (Building and Housing). 13 (6) (2012) 765-781. Search in Google Scholar

21. M. Liu, Y. Hu, Z. Lai, T. Yan, X. He, J. Wu, Z. Lu, S. Lv, Influence of various bentonites on the mechanical properties and impermeability of cement mortars, Construction and Building Materials. 241 (2020) 118015.10.1016/j.conbuildmat.2020.118015 Search in Google Scholar

22. H. Zanni, M. Cheyrezy, V. Maret, S. Philippot, P. Nieto, Investigation of hydration and pozzolanic reaction in reactive powder concrete (RPC) using 29 Si NMR, Cement and Concrete Research. 26 (1) (1996) 93–100.10.1016/0008-8846(95)00197-2 Search in Google Scholar

23. J. Du, W. Meng, K.H. Khayat, Y. Bao, P. Guo, Z. Lyu, A. Abu-obeidah, H. Nassif, H. Wang, New development of ultra-high-performance concrete (UHPC), Composites Part B: Engineering. 224 (2021) 109220.10.1016/j.compositesb.2021.109220 Search in Google Scholar

24. A.H. Alani, M.A.M. Johari, A.T. Noaman, N.M. Bunnori, T.A. Majid. Effect of the incorporation of PET fiber and ternary blended binder on the flexural and tensile behaviour of ultra-high performance green concrete, Construction and Building Materials. 331 (2022) 127306.10.1016/j.conbuildmat.2022.127306 Search in Google Scholar

25. AFNOR standards organisation. Bétons - Mesure du temps d’écoulement des bétons et des mortiers aux maniabilimètres NF 18-452 (1988). Search in Google Scholar

26. AFNOR standards organisation. Méthodes d’essai des mortiers pour maçonnerie - Partie 6: Détermination de la masse volumique apparente du mortier frais. NF EN 1015-6 (1999). Search in Google Scholar

27. AFNOR standards organisation. Méthodes d’essai des mortiers pour maçonnerie - Partie 10: détermination de la masse volumique apparente sèche du mortier durci. NF EN 1015-10 (2000). Search in Google Scholar

28. AFNOR standards organisation. Méthodes d’essai des mortiers pour maçonnerie - Partie 18: détermination du coefficient d’absorption d’eau par capillarité du mortier durci. NF EN 1015-18 (2003). Search in Google Scholar

29. American society for testing material. Standard Test Method for Pulse Velocity Through Concrete. ASTM C597-02 (2010) Search in Google Scholar

30. M. Malešev, V. Radonjanin, I. Lukić, V. Bulatović, The effect of aggregate, type and quantity of cement on modulus of elasticity of lightweight aggregate concrete, Arabian Journal for Science and Engineering. 39 (2) (2014) 705–711.10.1007/s13369-013-0702-2 Search in Google Scholar

31. T. Gupta, S. Chaudhary, R.K. Sharma, Mechanical and durability properties of waste rubber fiber concrete with and without silica fume, Journal of Cleaner Production. 112 (1) (2016) 702-711.10.1016/j.jclepro.2015.07.081 Search in Google Scholar

32. M.B. Leite, J.G.L. Figueire do Filho, P.R.L. Lima, Workability study of concretes made with recycled mortar aggregate, Materials and Structures. 46 (2013) 1765–1778.10.1617/s11527-012-0010-4 Search in Google Scholar

33. İ.B. Topçu, S. Şengel, Properties of concretes produced with waste concrete aggregate, Cement and Concrete Research. 34 (2004) 1307–1312.10.1016/j.cemconres.2003.12.019 Search in Google Scholar

34. T. Felixkala, P. Partheeban, Granite powder concrete, Indian Journal of Science and Technology. 3(3) (2010) 311–31710.17485/ijst/2010/v3i3.6 Search in Google Scholar

35. Z. Laidani, Y. Ouldkhaoua, M. Sahraoui, B. Benabed, Feasibility of marble powder and calcined bentonite in SCM as partial substitution of cement for sustainable production Építőanyag – Journal of Silicate Based and Composite Materials. 74 (2022) 61–66.10.14382/epitoanyag-jsbcm.2022.10 Search in Google Scholar

36. C.B. Farinha, J. de Brito, R. Veiga, Incorporation of high contents of textile, acrylic and glass waste fibres in cement-based mortars. Influence on mortars’ fresh, mechanical and deformability behavior, Construction and Building Materials. 303 (2021) 124424.10.1016/j.conbuildmat.2021.124424 Search in Google Scholar

37. T. Ochi, S. Okubo, K. Fukui, Development of recycled PET fiber and its application as concrete-reinforcing fiber, Cement and Concrete Composites. 29 (6) (2007) 448–455.10.1016/j.cemconcomp.2007.02.002 Search in Google Scholar

38. R. Tang, Q. Wei, K. Zhang, S. Jiang, Z. Shen, Y. Zhang, C.W.K. Chow, Preparation and performance analysis of recycled PET fiber reinforced recycled foamed concrete, Journal of Building Engineering. 57 (2022) 10494810.1016/j.jobe.2022.104948 Search in Google Scholar

39. D. Niu, L.i. Su, Y. Luo, D. Huang, D. Luo, Experimental study on mechanical properties and durability of basalt fiber reinforced coral aggregate concrete, Construction and Building Materials. 237 (2020) 117628.10.1016/j.conbuildmat.2019.117628 Search in Google Scholar

40. X.U.E. Weipei, L.I.U. Xiaoyuan, Y.A.O. Zhishu, H. Cheng, L.I. Haopeng, Effects of different damage sources on pore structure change characteristics of basalt fiber reinforced concrete, Journal of Composite Materials. 37 (9) (2020) 2285-2293. Search in Google Scholar

41. D. Niu, D. Huang, Q. Fu, Experimental investigation on compressive strength and chloride permeability of fiber-reinforced concrete with basalt-polypropylene fibers, Advances in Structural Engineering. 22 (2019) 2278–2288.10.1177/1369433219837387 Search in Google Scholar

42. D. Wang, Y. Ju, H. Shen, L. Xu, Mechanical properties of high performance concrete reinforced with basalt fiber and polypropylene fiber, Construction and Building Materials. 197 (2019) 464–473.10.1016/j.conbuildmat.2018.11.181 Search in Google Scholar

43. Y. Yao, B. Wang, Y. Zhuge, Z. Huang, Properties of hybrid basalt-polypropylene fiber reinforced mortar at different temperatures, Construction and Building Materials. 346 (2022) 128433.10.1016/j.conbuildmat.2022.128433 Search in Google Scholar

44. A. Toghroli, P. Mehrabi, M. Shariati, N.T. Trung, S. Jahandari, H. Rasekh, Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers, Construction and Building Materials. 252 (2020) 118997.10.1016/j.conbuildmat.2020.118997 Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials