Accès libre

Analytical Description of Concentration of Radiation Displacement Defects in Oxide Crystals as Function of Electrons or Neutrons Energy

   | 08 oct. 2022
À propos de cet article

Citez

1. Ubizskii S.B., Matkovskii A.O., Mironova-Ulmane N., Skvortsova V., Suchocki A., Zhydachevskii Y.A., Potera P.: Displacement Defect Formation in Oxide Crystals under Irradiation. Physica Status Solidii (a) 177 (2000) 349–366. Search in Google Scholar

2. Pooley D.: F-centre production in alkali halides by electron-hole recombination and a subsequent [110] replacement sequence: a discussion of the electron-hole recombination. Proc. Phys. Soc. 87 (1966) 245–246. Search in Google Scholar

3. Hersh H.N.: Proposed excitonic mechanism of color-center formation in alkali halides. Phys. Rev. 148(2) (1966) 928–932. Search in Google Scholar

4. Kristianpoller N., Israeli M.: Excitonic processes and thermoluminescence. Phys. Rev. B 2(6) (1970) 2175–2182. Search in Google Scholar

5. Sibley W.A., Hen Y.: Radiation damage in MgO. Phys. Rev. 160(3) (1967) 712–716. Search in Google Scholar

6. Klinger M.I., Lushchik Ch.B., Mashovets T.V., Kholodar G.A., Sheĭnkman M.K., Elango M.A.: Defect formation in solids by decay of electronic excitations. Sov. Phys. Uspekhi. 28(11) (1985) 994–1014. Search in Google Scholar

7. Rose T.S., Hopkins M.S., Fields R.A.: Characterization and control gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers. IEEE J. Quantum Elect. 31(9) (1995)1593–1602. Search in Google Scholar

8. Sugak D., Matkovskii A., Durygin A., Suchocki A., Solski I., Ubizskii S., Kopczyński K., Mierczyk Z., Potera P.: Influence of color centers on optical and lasing properties of the gadolinium garnet single crystal doped with Nd3+ ions. J. Luminescence 82 (1999) 9–15. Search in Google Scholar

9. Bedilov M.R., Egamov U.: Influence of radiation defects on operating characteristics of solid-state lasers. Soviet J. Quantum Elect. 11(7) (1981) 969–970. Search in Google Scholar

10. Sugak D.Yu., Matkowski A.O., Grabovskii V.V., Prokhorenko V.I., Suchocki A., Durygin A.M., Solskii I.M., Shakhov A.P.: Influence of the γ-radiation on the generation characteristics of the YAlO3:Nd crystals. Acta Phys Polonica 93(4) (1998) 643–648. Search in Google Scholar

11. Kaminski A.A.: Laser crystals. Their physics and properties. Springer, Berlin, 1981 Search in Google Scholar

12. Chen F., Ju M., Gutsev G.L., Kuang X., Lu C., Yeung Y.: Structure and luminescence properties of a Nd3+ doped Bi4Ge3O12 scintillation crystal: new insights from a comprehensive study. J. Mater. Chem. C 5 (2017) 3079–3087. Search in Google Scholar

13. Chen F., Ju M., Kuang X., Yeung Y.: Insights into the Microstructure and Transition Mechanism for Nd3+-Doped Bi4Si3O12: A Promising Near-Infrared Laser Material. Inorg. Chem. 57 (8) (2018) 4563–4570. Search in Google Scholar

14. Di J., Xu X., Xia Ch., Zhoua D., Sai Q., Xu Y.: Growth and spectral properties of Yb:Ca0.28Ba0.72Nb2O6 disordered crystal. Optik 125 (2014) 6620–6624. Search in Google Scholar

15. Molina P., Rodríguez E., Jaque D., Bausá L.E., García-Solé J., Zhang H., Jiyang W.G., Jiang M.: Optical spectroscopy of neodymium-doped calcium barium niobate ferroelectric crystals. Journal of Luminescence 129 (2009)1658–1660. Search in Google Scholar

16. Rose T.S., Hopkins M.S., Fields R.A.: Characterization and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers. IEEE. J. Quant. Electronics 31 (1995)1593–1602. Search in Google Scholar

17. Israel M.H. Cosmic-Ray Electrons between 12 MeV and 1 GeV in 1957. Journal of Geophysical Research 74(19) (1969) 4701–4713.10.1029/JA074i019p04701 Search in Google Scholar

18. Kowatari K., Nagaoka K., Satoh S., Ohta Y., Abukawa J., Tachimori S., Nakamura T.: Evaluation of the Altitude Variation of the Cosmic-ray Induced Environmental Neutrons in the Mt. Fuji Area. Journal of Nuclear Science and Technology 42(6) (2005) 495–502. Search in Google Scholar

19. Friedland E.: Radiation Damage in Metals. Critical Reviews in Solid State and Material Sciences 25(2) (2001) 87–143. Search in Google Scholar

20. Kinchin G.H., Pease R.S.: The Displacement of Atoms in Solids by Radiation. Rep. Progr. Phys. 18 (1955) 1–52. Search in Google Scholar

21. McKinley W.A., Feshbach H.: The Coulomb Scattering of Relativistic Electrons by Nuclei. Phys. Rev. 74(12) (1948) 1759–1763. Search in Google Scholar

22. Ubizskii S.B.: Calculations of concentration of radiation defects in complex compound during cascade-creation irradiation. Electronics - The bulletin of State University “Lvivska Polytechnica” 357 (1998) 88–98. Search in Google Scholar

23. Potera P.: Concentration of radiation displacement defects in BSO and BGO crystals irradiated by electrons or neutrons. CEJP 6(1) (2008) 52–56. Search in Google Scholar

24. Veiller L., Crocombette J.P., Ghaleb D.: Molecular dynamics simulation of the a-recoil nucleus displacement cascade in zirconolite. Journal of Nuclear Materials 306 (2002) 61–72. Search in Google Scholar

25. Aubin-Chevaldonnet V., Gourier D., Caurant D., Esnouf S., Charpentier T., Costantini J.M.: Paramagnetic defects induced by electron irradiation in barium hollandite ceramics for caesium storage. J. Phys.: Condens. Matter 18 (2006) 4007–4027. Search in Google Scholar

26. Cheng G., Wei N., Wang L., Qi J., Zeng Q., Lu T., Wang Z.: An ab initio molecular dynamics study on the threshold displacement energies in yttrium aluminum garnet. J. Appl. Phys. 126 (2019) 055701. Search in Google Scholar

27. Database of Ionic Radii, http://abulafia.mt.ic.ac.uk/shannon/ptable.php Search in Google Scholar

28. Cobett J.B., Burgoin J.C., Point defect in solid. [In] vol 2, semiconductors and molecular crystals. J.H. Crawford, Jr.L.M. Slifkins, [ed] Plenum Press, New York and London, 1975. Search in Google Scholar

29. Chen S., Bernard D.: On the calculation of atomic displacements using damage energy. Results in Physics 16 (2020) 102835. Search in Google Scholar

30. Nordlund K., Zinkle S.J., Sand A.E., Granberg F., Averback R.S., Stoller R., Suzudo T., Malerba L., Banhart F., Weber W.J., Willaime F., Dudarev S.L., Simeone D.: Improving atomic displacement and replacement calculations with physically realistic damage models. Nature Communications 9 (2018)1084. Search in Google Scholar

31. Guo D., He C., Zang H., Zhang P., Ma L., Li T., Cao X.: Re-evaluation of neutron displacement cross sections for silicon carbide by a Monte Carlo approach. Journal of Nuclear Science and Technology 53(2) (2016) 161–172. Search in Google Scholar

32. Fabelo A.L., Hernández I.P., Pernía D.L., Alfonso Y.A., Inclán C.M.C.: Electron and positron contributions to the displacement per atom profile in bulk multi-walled carbon nanotube material irradiated with gamma rays. Nucleus 53 (2013) 5–9. Search in Google Scholar

33. Kim J., Pearton S. J., Fares C., Yang J., Ren F., Kima S., Polyakovd A. Y.: Radiation damage effects in Ga2O3 materials and devices. J. Mater. Chem. C 7 (2019) 10–24. Search in Google Scholar

34. Allam E.E., Inguimbert C., Addarkaoui S., Meulenberg A., Jorio A., Zorkani I.: NIEL calculations for estimating the displacement damage introduced in GaAs irradiated with charged particles. IOP Conf. Series: Materials Science and Engineering 186 (2017) 012005. Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials