Accès libre

Mathematical Model for Friction Stir Lap Welded AA5052 and SS304 Joints and Process Parameters Optimization for High Joint Strength

À propos de cet article

Citez

1. V. Chitturi, S.R. Pedapati, M. Awang, Challenges in dissimilar friction stir welding of aluminum 5052 and 304 stainless steel alloys, Materialwissenschaft Und Werkstofftechnik. 51 (2020) 811–816. https://doi.org/10.1002/mawe.201900234.10.1002/mawe.201900234 Search in Google Scholar

2. R. Rai, A. De, H.K.D.H. Bhadeshia, T. DebRoy, Review: friction stir welding tools, Science and Technology of Welding and Joining. 16 (2011) 325–342. https://doi.org/10.1179/1362171811Y.0000000023.10.1179/1362171811Y.0000000023 Search in Google Scholar

3. M.K. Bilici, Application of Taguchi approach to optimize friction stir spot welding parameters of polypropylene, Materials & Design. 35 (2012) 113–119. https://doi.org/10.1016/j.matdes.2011.08.033.10.1016/j.matdes.2011.08.033 Search in Google Scholar

4. M. Tutar, H. Aydin, C. Yuce, N. Yavuz, A. Bayram, The optimisation of process parameters for friction stir spot-welded AA3003-H12 aluminium alloy using a Taguchi orthogonal array, Materials & Design. 63 (2014) 789–797. https://doi.org/10.1016/j.matdes.2014.07.003.10.1016/j.matdes.2014.07.003 Search in Google Scholar

5. S. Singh, G. Singh, C. Prakash, R. Kumar, On the mechanical characteristics of friction stir welded dissimilar polymers: statistical analysis of the processing parameters and morphological investigations of the weld joint, The Journal of the Brazilian Society of Mechanical Sciences and Engineering. 42 (2020) 154. https://doi.org/10.1007/s40430-020-2227-4.10.1007/s40430-020-2227-4 Search in Google Scholar

6. N. Muhammad, Y.H.P. Manurung, M. Hafidzi, S.K. Abas, G. Tham, E. Haruman, Optimization and modeling of spot welding parameters with simultaneous multiple response consideration using multi-objective Taguchi method and RSM, Journal of Mechanical Science and Technology. 26 (2012) 2365–2370. https://doi.org/10.1007/s12206-012-0618-x.10.1007/s12206-012-0618-x Search in Google Scholar

7. R.K. Roy, A primer on the Taguchi method, 2nd ed, Society of Manufacturing Engineers, Dearborn, MI, 2010. Search in Google Scholar

8. Y. Javadi, S. Sadeghi, M.A. Najafabadi, Taguchi optimization and ultrasonic measurement of residual stresses in the friction stir welding, Materials & Design. 55 (2014) 27–34. https://doi.org/10.1016/j.matdes.2013.10.021.10.1016/j.matdes.2013.10.021 Search in Google Scholar

9. D.G. Mohan, J. Tomków, S. Gopi, Induction assisted hybrid friction stir welding of dissimilar materials AA5052 aluminium alloy and X12Cr13 stainless steel, Advances in Materials Science. 21 (2021) 17–30. https://doi.org/10.2478/adms-2021-0015.10.2478/adms-2021-0015 Search in Google Scholar

10. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Optimization of the friction-stir-welding process and tool parameters to attain a maximum tensile strength of AA7075–T 6 aluminium alloy, Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture. 224 (2010) 1175–1191. https://doi.org/10.1243/09544054JEM1802.10.1243/09544054JEM1802 Search in Google Scholar

11. Q. Wen, W.Y. Li, W.B. Wang, F.F. Wang, Y.J. Gao, V. Patel, Experimental and numerical investigations of bonding interface behavior in stationary shoulder friction stir lap welding, Journal of Materials Science & Technology. 35 (2019) 192–200. https://doi.org/10.1016/j.jmst.2018.09.028.10.1016/j.jmst.2018.09.028 Search in Google Scholar

12. I. Sabry, A.M. El-Kassas, A.-H.I. Mourad, D.T. Thekkuden, J. Abu Qudeiri, Friction Stir Welding of T-Joints: Experimental and Statistical Analysis, Journal of Manufacturing and Materials Processing. 3 (2019) 38. https://doi.org/10.3390/jmmp3020038.10.3390/jmmp3020038 Search in Google Scholar

13. S. Rajakumar, C. Muralidharan, V. Balasubramanian, Statistical analysis to predict grain size and hardness of the weld nugget of friction-stir-welded AA6061-T6 aluminium alloy joints, The International Journal of Advanced Manufacturing Technology. 57 (2011) 151–165. https://doi.org/10.1007/s00170-011-3279-5.10.1007/s00170-011-3279-5 Search in Google Scholar

14. K. Elangovan, V. Balasubramanian, S. Babu, Predicting tensile strength of friction stir welded AA6061 aluminium alloy joints by a mathematical model, Materials & Design. 30 (2009) 188–193. https://doi.org/10.1016/j.matdes.2008.04.037.10.1016/j.matdes.2008.04.037 Search in Google Scholar

15. R. Seetharaman, M. Seeman, D. Kanagarajan, P. Sivaraj, I. Saravanan, A statistical evaluation of the corrosion behaviour of friction stir welded AA2024 aluminium alloy, Materials Today: Proceedings. 22 (2020) 673–680. https://doi.org/10.1016/j.matpr.2019.09.066.10.1016/j.matpr.2019.09.066 Search in Google Scholar

16. A. Goyal, R. Garg, Modeling and optimization of friction stir welding parameters in joining 5086 H32 aluminium alloy, Scientia Iranica Transaction B, Mechanical Engineering. 26 (2018) 2407-2417. https://doi.org/10.24200/sci.2018.5525.1325.10.24200/sci.2018.5525.1325 Search in Google Scholar

17. G.H. Li, L. Zhou, F.Y. Shu, Y.C. Liu, Statistical and metallurgical analysis of dissimilar friction stir spot welded aluminum/copper metals, The Journal of Materials Engineering and Performance. 29 (2020) 1830–1840. https://doi.org/10.1007/s11665-020-04729-6.10.1007/s11665-020-04729-6 Search in Google Scholar

18. F. Sarsılmaz, U. Çaydaş, Statistical analysis on mechanical properties of friction-stir-welded AA 1050/AA 5083 couples, The International Journal of Advanced Manufacturing Technology. 43 (2009) 248–255. https://doi.org/10.1007/s00170-008-1716-x.10.1007/s00170-008-1716-x Search in Google Scholar

19. C. Bitondo, U. Prisco, A. Squilace, P. Buonadonna, G. Dionoro, Friction-stir welding of AA 2198 butt joints: mechanical characterization of the process and of the welds through DOE analysis, The International Journal of Advanced Manufacturing Technology. 53 (2011) 505–516. https://doi.org/10.1007/s00170-010-2879-9.10.1007/s00170-010-2879-9 Search in Google Scholar

20. T. Babu Rao, Stochastic Tensile Failure Analysis on Dissimilar AA6061-T6 with AA7075-T6 Friction Stir Welded Joints and Predictive Modeling, Journal of Failure Analysis and Prevention. 20 (2020) 1333–1350. https://doi.org/10.1007/s11668-020-00937-3.10.1007/s11668-020-00937-3 Search in Google Scholar

21. C.-W. Yang, S.-J. Jiang, Weibull Statistical Analysis of Strength Fluctuation for Failure Prediction and Structural Durability of Friction Stir Welded Al–Cu Dissimilar Joints Correlated to Metallurgical Bonded Characteristics, Materials. 12 (2019) 205. https://doi.org/10.3390/ma12020205.10.3390/ma12020205635642430634455 Search in Google Scholar

22. H.-J. Sohn, G.D. Haryadi, S.-J. Kim, Statistical aspects of fatigue crack growth life of base metal, weld metal and heat affected zone in FSWed 7075-T651 aluminium alloy, Journal of Mechanical Science and Technology. 28 (2014) 3957–3962. https://doi.org/10.1007/s12206-014-0906-8.10.1007/s12206-014-0906-8 Search in Google Scholar

23. R. Taghiabadi, N. Aria, Statistical Strength Analysis of Dissimilar AA2024-T6 and AA6061-T6 Friction Stir Welded Joints, The Journal of Materials Engineering and Performance. 28 (2019) 1822–1832. https://doi.org/10.1007/s11665-019-03907-5.10.1007/s11665-019-03907-5 Search in Google Scholar

24. M.P. de la Parte, J.C. Azofra, H.D.C. Fals, A.S. Roca, M.C.S. Orozco, E.J. Macías, A new way to predict the mechanical properties of friction stir spot welding for Al-Cu joints by energy analysis of the vibration signals, The International Journal of Advanced Manufacturing Technology. 105 (2019) 1823–1834. https://doi.org/10.1007/s00170-019-04396-5.10.1007/s00170-019-04396-5 Search in Google Scholar

25. T. Medhi, Selection of best process parameters for friction stir welded dissimilar Al-Cu alloy: a novel MCDM amalgamated MORSM approach, Journal of the Brazilian Society of Mechanical Sciences and Engineering. (2020) 22.10.1007/s40430-020-02631-9 Search in Google Scholar

26. B. Venu, L. Suvarna Raju, K. Venkata Rao, Multiobjective optimization of friction stir weldments of AA2014-T651 by teaching–learning-based optimization, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 234 (2020) 1146–1155. https://doi.org/10.1177/0954406219891755.10.1177/0954406219891755 Search in Google Scholar

27. U. Kumar, I. Yadav, S. Kumari, K. Kumari, N. Ranjan, R.K. Kesharwani, R. Jain, S. Kumar, S. Pal, D. Chakravarty, S.K. Pal, Defect identification in friction stir welding using discrete wavelet analysis, Advances in Engineering Software. 85 (2015) 43–50. https://doi.org/10.1016/j.advengsoft.2015.02.001.10.1016/j.advengsoft.2015.02.001 Search in Google Scholar

28. M.D. Sameer, A.K. Birru, Optimization and characterization of dissimilar friction stir welded DP600 dual phase steel and AA6082-T6 aluminium alloy sheets using TOPSIS and grey relational analysis, Materials Research Express. 6 (2019) 056542. https://doi.org/10.1088/2053-1591/aafba4.10.1088/2053-1591/aafba4 Search in Google Scholar

29. M. Yunus, M.S. Alsoufi, Mathematical Modelling of a Friction Stir Welding Process to Predict the Joint Strength of Two Dissimilar Aluminium Alloys Using Experimental Data and Genetic Programming, Modelling and Simulation in Engineering. 2018 (2018) e4183816. https://doi.org/10.1155/2018/4183816.10.1155/2018/4183816 Search in Google Scholar

30. X. He, F. Gu, A. Ball, A review of numerical analysis of friction stir welding, Progress in Materials Science. 65 (2014) 1–66. https://doi.org/10.1016/j.pmatsci.2014.03.003.10.1016/j.pmatsci.2014.03.003 Search in Google Scholar

31. R. Hartl, F. Vieltorf, M.F. Zaeh, Correlations between the surface topography and mechanical properties of friction stir welds, Metals. 10 (2020) 890. https://doi.org/10.3390/met10070890.10.3390/met10070890 Search in Google Scholar

32. V. Chitturi, S.R. Pedapati, M. Awang, Effect of tilt angle and pin depth on dissimilar friction stir lap welded joints of aluminum and steel alloys, Materials. 12 (2019) 3901. https://doi.org/10.3390/ma12233901.10.3390/ma12233901692658431779107 Search in Google Scholar

33. L. Wan, Y. Huang, Microstructure and Mechanical Properties of Al/Steel Friction Stir Lap Weld, Metals. 7 (2017) 542. https://doi.org/10.3390/met7120542.10.3390/met7120542 Search in Google Scholar

34. P.J. Ross, Taguchi Techniques For Quality Engineering: Loss Function, Orthogonal Experiments, Parameter And Tolerance Design, Undefined. (1988). /paper/Taguchi-Techniques-For-Quality-Engineering%3A-Loss-Ross/bfc850abde17ffd7ffdf37bcaed67e44c9867c84 (accessed October 20, 2020). Search in Google Scholar

35. A.M. Hassan, M. Almomani, T. Qasim, A. Ghaithan, Statistical analysis of some mechanical properties of friction stir welded aluminium matrix composite, International Journal of Experimental Design and Process Optimisation. 3 (2012) 91. https://doi.org/10.1504/IJEDPO.2012.045616.10.1504/IJEDPO.2012.045616 Search in Google Scholar

36. V. Chitturi, S.R. Pedapati, M. Awang, Investigation of Weld Zone and Fracture Surface of Friction Stir Lap Welded 5052 Aluminum Alloy and 304 Stainless Steel Joints, Coatings. 10 (2020) 1062. https://doi.org/10.3390/coatings10111062.10.3390/coatings10111062 Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials