Accès libre

A Review on Utilizing the Marine Biorefinery Waste in Construction Raw Materials to Reduce Land Pollution and Enhance Green Environment

À propos de cet article

Citez

1. B. Safi, M. Saidi, A. Daoui, A. Bellal, A. Mechekak, and K. Toumi, “The use of seashells as a fine aggregate (by sand substitution) in self-compacting mortar (SCM),” Constr. Build. Mater., vol. 78, pp. 430–438, 2015, doi: 10.1016/j.conbuildmat.2015.01.009.10.1016/j.conbuildmat.2015.01.009 Search in Google Scholar

2. W. A. S. Bin Wan Mohammad, N. H. Othman, M. H. Wan Ibrahim, M. A. Rahim, S. Shahidan, and R. A. Rahman, “A review on seashells ash as partial cement replacement,” IOP Conf. Ser. Mater. Sci. Eng., vol. 271, no. 1, pp. 1–8, 2017, doi: 10.1088/1757-899X/271/1/012059.10.1088/1757-899X/271/1/012059 Search in Google Scholar

3. P. Ballester, I. Mármol, J. Morales, and L. Sánchez, “Use of limestone obtained from waste of the mussel cannery industry for the production of mortars,” Cem. Concr. Res., vol. 37, no. 4, pp. 559–564, 2007, doi: 10.1016/j.cemconres.2007.01.004.10.1016/j.cemconres.2007.01.004 Search in Google Scholar

4. B. Peceño, C. Arenas, B. Alonso-Fariñas, and C. Leiva, “Substitution of Coarse Aggregates with Mollusk-Shell Waste in Acoustic-Absorbing Concrete,” J. Mater. Civ. Eng., vol. 31, no. 6, p. 04019077, 2019, doi: 10.1061/(asce)mt.1943-5533.0002719.10.1061/(ASCE)MT.1943-5533.0002719 Search in Google Scholar

5. G. L. Yoon, B. T. Kim, B. O. Kim, and S. H. Han, “Chemical-mechanical characteristics of crushed oyster-shell,” Waste Manag., vol. 23, no. 9, pp. 825–834, 2003, doi: 10.1016/S0956-053X(02)00159-9.10.1016/S0956-053X(02)00159-9 Search in Google Scholar

6. K. N. R. F. C. Venkata Sai Nagendra, C. Venkata Siva Rama Prasad, “An Experimental Investigation On Properties Of Concrete By Partial Replacement Of Cement With Dolomite And Sand With Crushed Sea Shell,” Int. J. Sci. Technol. Res. Vol. 8, ISSUE 10, Oct. 2019 ISSN 2277-8616, vol. 43, no. July, pp. 1325–1330, 2020, doi: 10.1016/j.matpr.2020.09.164.10.1016/j.matpr.2020.09.164 Search in Google Scholar

7. E. Gartner and H. Hirao, “A review of alternative approaches to the reduction of CO2 emissions associated with the manufacture of the binder phase in concrete,” Cem. Concr. Res., vol. 78, pp. 126–142, 2015, doi: 10.1016/j.cemconres.2015.04.012.10.1016/j.cemconres.2015.04.012 Search in Google Scholar

8. F. Soltanzadeh, M. Emam-Jomeh, A. Edalat-Behbahani, and Z. Soltan-Zadeh, “Development and characterization of blended cements containing seashell powder,” Constr. Build. Mater., vol. 161, pp. 292–304, 2018, doi: 10.1016/j.conbuildmat.2017.11.111.10.1016/j.conbuildmat.2017.11.111 Search in Google Scholar

9. G. K. M. Subramanian, M. Balasubramanian, and A. A. Jeya Kumar, “A Review on the Mechanical Properties of Natural Fiber Reinforced Compressed Earth Blocks,” J. Nat. Fibers, vol. 00, no. 00, pp. 1–15, 2021, doi: 10.1080/15440478.2021.1958405.10.1080/15440478.2021.1958405 Search in Google Scholar

10. C. Rahul Rollakanti, C. Venkata Siva Rama Prasad, K. K. Poloju, N. M. Juma Al Muharbi, and Y. Venkat Arun, “An experimental investigation on mechanical properties of concrete by partial replacement of cement with wood ash and fine sea shell powder,” Mater. Today Proc., vol. 43, no. April, pp. 1325–1330, 2020, doi: 10.1016/j.matpr.2020.09.164.10.1016/j.matpr.2020.09.164 Search in Google Scholar

11. F. C. Lo, S. L. Lo, and M. G. Lee, “Effect of partially replacing ordinary Portland cement with municipal solid waste incinerator ashes and rice husk ashes on pervious concrete quality,” Environ. Sci. Pollut. Res., vol. 27, no. 19, pp. 23742–23760, 2020, doi: 10.1007/s11356-020-08796-z.10.1007/s11356-020-08796-z32301089 Search in Google Scholar

12. N. Mikanovic, K. Khayat, M. Pagé, and C. Jolicoeur, “Aqueous CaCO3 dispersions as reference systems for early-age cementitious materials,” Colloids Surfaces A Physicochem. Eng. Asp., vol. 291, no. 1–3, pp. 202–211, 2006, doi: 10.1016/j.colsurfa.2006.06.042.10.1016/j.colsurfa.2006.06.042 Search in Google Scholar

13. Y. M. H. Mustafa, O. S. B. Al-Amoudi, S. Ahmad, M. Maslehuddin, and M. H. Al-Malack, “Utilization of Portland cement with limestone powder and cement kiln dust for stabilization/solidification of oil-contaminated marl soil,” Environ. Sci. Pollut. Res., vol. 28, no. 3, pp. 3196–3216, 2021, doi: 10.1007/s11356-020-10590-w.10.1007/s11356-020-10590-w32910405 Search in Google Scholar

14. D. Chen, P. Zhang, T. Pan, Y. Liao, and H. Zhao, “Evaluation of the eco-friendly crushed waste oyster shell mortars containing supplementary cementitious materials,” J. Clean. Prod., vol. 237, p. 117811, 2019, doi: 10.1016/j.jclepro.2019.117811.10.1016/j.jclepro.2019.117811 Search in Google Scholar

15. T. Sato and F. Diallo, “Seeding effect of nano-CaCO3 on the hydration of tricalcium silicate,” Transp. Res. Rec., no. 2141, pp. 61–67, 2010, doi: 10.3141/2141-11.10.3141/2141-11 Search in Google Scholar

16. C. H. Tsou et al., “Rendering polypropylene biocomposites antibacterial through modification with oyster shell powder,” Polymer (Guildf)., vol. 160, pp. 265–271, 2019, doi: 10.1016/j.polymer.2018.11.048.10.1016/j.polymer.2018.11.048 Search in Google Scholar

17. T. H. Silva, J. Mesquita-Guimarães, B. Henriques, F. S. Silva, and M. C. Fredel, “The potential use of oyster shell waste in new value-added by-product,” Resources, vol. 8, no. 1, pp. 1–15, 2019, doi: 10.3390/resources8010013.10.3390/resources8010013 Search in Google Scholar

18. M. Huang, H. Feng, N. Li, D. Shen, Y. Zhou, and Y. Jia, “Addition of large amount of municipal sewage sludge as raw material in cement clinker production,” Environ. Sci. Pollut. Res., vol. 24, no. 36, pp. 27862–27869, 2017, doi: 10.1007/s11356-017-9949-6.10.1007/s11356-017-9949-628988311 Search in Google Scholar

19. A. Edalat-Behbahani, F. Soltanzadeh, M. Emam-Jomeh, and Z. Soltan-Zadeh, “Sustainable approaches for developing concrete and mortar using waste seashell,” Eur. J. Environ. Civ. Eng., vol. 25, no. 10, pp. 1874–1893, 2021, doi: 10.1080/19648189.2019.1607780.10.1080/19648189.2019.1607780 Search in Google Scholar

20. A. Ahmed, S. Guo, Z. Zhang, C. Shi, and D. Zhu, “A review on durability of fiber reinforced polymer (FRP) bars reinforced seawater sea sand concrete,” Constr. Build. Mater., vol. 256, p. 119484, 2020, doi: 10.1016/j.conbuildmat.2020.119484.10.1016/j.conbuildmat.2020.119484 Search in Google Scholar

21. G. Del, Á. El, T. Lagunillas, F. Valeriano, E. Algodón, and F. L. A. Totora, “Study of compressive strength characteristics of coral aggregate concrete,” no. 270, p. 2305, 2013. Search in Google Scholar

22. S. Motamedi, S. Shamshirband, R. Hashim, D. Petković, and C. Roy, “Estimating unconfined compressive strength of cockle shell-cement-sand mixtures using soft computing methodologies,” Eng. Struct., vol. 98, pp. 49–58, 2015, doi: 10.1016/j.engstruct.2015.03.070.10.1016/j.engstruct.2015.03.070 Search in Google Scholar

23. T. A. Dang, S. Kamali-Bernard, and W. A. Prince, “Design of new blended cement based on marine dredged sediment,” Constr. Build. Mater., vol. 41, pp. 602–611, 2013, doi: 10.1016/j.conbuildmat.2012.11.088.10.1016/j.conbuildmat.2012.11.088 Search in Google Scholar

24. Q. Wang, P. Li, Y. Tian, W. Chen, and C. Su, “Mechanical properties and microstructure of Portland cement concrete prepared with coral reef sand,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 31, no. 5, pp. 996–1001, 2016, doi: 10.1007/s11595-016-1481-x.10.1007/s11595-016-1481-x Search in Google Scholar

25. J. M. Gao, C. X. Qian, H. F. Liu, B. Wang, and L. Li, “ITZ microstructure of concrete containing GGBS,” Cem. Concr. Res., vol. 35, no. 7, pp. 1299–1304, 2005, doi: 10.1016/j.cemconres.2004.06.042.10.1016/j.cemconres.2004.06.042 Search in Google Scholar

26. D. H. K. Prasad and C. V. S. R. Prasad, “Review Paper on the Effect of Microbiologically induced CaCO 3 Precipitation on Self healing Method of Concrete : Bacterial concrete,” vol. 5, no. Xii, pp. 1045–1049, 2017. Search in Google Scholar

27. D. Wang, H. Wang, S. Larsson, M. Benzerzour, W. Maherzi, and M. Amar, “Effect of basalt fiber inclusion on the mechanical properties and microstructure of cement-solidified kaolinite,” Constr. Build. Mater., vol. 241, p. 118085, 2020, doi: 10.1016/j.conbuildmat.2020.118085.10.1016/j.conbuildmat.2020.118085 Search in Google Scholar

28. S. Cheng, Z. Shui, T. Sun, R. Yu, G. Zhang, and S. Ding, “Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete,” Appl. Clay Sci., vol. 141, pp. 111–117, 2017, doi: 10.1016/j.clay.2017.02.026.10.1016/j.clay.2017.02.026 Search in Google Scholar

29. W. Kurdowski, “The protective layer and decalcification of C-S-H in the mechanism of chloride corrosion of cement paste,” Cem. Concr. Res., vol. 34, no. 9, pp. 1555–1559, 2004, doi: 10.1016/j.cemconres.2004.03.023.10.1016/j.cemconres.2004.03.023 Search in Google Scholar

30. G. Rajasekaran, “Sulphate attack and ettringite formation in the lime and cement stabilized marine clays,” Ocean Eng., vol. 32, no. 8–9, pp. 1133–1159, 2005, doi: 10.1016/j.oceaneng.2004.08.012.10.1016/j.oceaneng.2004.08.012 Search in Google Scholar

31. F. Martirena and J. Monzó, “Vegetable ashes as Supplementary Cementitious Materials,” Cem. Concr. Res., vol. 114, no. November 2016, pp. 57–64, 2018, doi: 10.1016/j.cemconres.2017.08.015.10.1016/j.cemconres.2017.08.015 Search in Google Scholar

32. E. Aprianti, P. Shafigh, S. Bahri, and J. N. Farahani, “Supplementary cementitious materials origin from agricultural wastes - A review,” Constr. Build. Mater., vol. 74, pp. 176–187, 2015, doi: 10.1016/j.conbuildmat.2014.10.010.10.1016/j.conbuildmat.2014.10.010 Search in Google Scholar

33. D. Wang, Q. Zhao, C. Yang, Y. Chi, W. Qi, and Z. Teng, “Study on frost resistance and vegetation performance of seashell waste pervious concrete in cold area,” Constr. Build. Mater., vol. 265, p. 120758, 2020, doi: 10.1016/j.conbuildmat.2020.120758.10.1016/j.conbuildmat.2020.120758 Search in Google Scholar

34. A. Naqi, S. Siddique, H. K. Kim, and J. G. Jang, “Examining the potential of calcined oyster shell waste as additive in high volume slag cement,” Constr. Build. Mater., vol. 230, p. 116973, 2020, doi: 10.1016/j.conbuildmat.2019.116973.10.1016/j.conbuildmat.2019.116973 Search in Google Scholar

35. J. H. Seo, S. M. Park, B. J. Yang, and J. G. Jang, “Calcined oyster shell powder as an expansive additive in cement mortar,” Materials (Basel)., vol. 12, no. 8, 2019, doi: 10.3390/ma12081322.10.3390/ma12081322651543731018545 Search in Google Scholar

36. R. K. Etim, I. C. Attah, and P. Yohanna, “Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction,” Int. J. Pavement Res. Technol., vol. 13, no. 4, pp. 341–351, 2020, doi: 10.1007/s42947-020-0290-y.10.1007/s42947-020-0290-y Search in Google Scholar

37. F. Marin, N. Le Roy, and B. Marie, “2. MOLLUSK SHELL 2.1. Introduction,” pp. 1099–1125, 2012. Search in Google Scholar

38. K. C. Panda, S. Behera, and S. Jena, “Effect of rice husk ash on mechanical properties of concrete containing crushed seashell as fine aggregate,” Mater. Today Proc., vol. 32, no. 4, pp. 838–843, 2020, doi: 10.1016/j.matpr.2020.04.049.10.1016/j.matpr.2020.04.049 Search in Google Scholar

39. C. Martínez-García, B. González-Fonteboa, F. Martínez-Abella, and D. Carro-López, “Performance of mussel shell as aggregate in plain concrete,” Constr. Build. Mater., vol. 139, pp. 570–583, 2017, doi: 10.1016/j.conbuildmat.2016.09.091.10.1016/j.conbuildmat.2016.09.091 Search in Google Scholar

40. H. Cuadrado-Rica, N. Sebaibi, M. Boutouil, and B. Boudart, “Properties of ordinary concretes incorporating crushed queen scallop shells,” Mater. Struct. Constr., vol. 49, no. 5, pp. 1805–1816, 2016, doi: 10.1617/s11527-015-0613-7.10.1617/s11527-015-0613-7 Search in Google Scholar

41. J. Burt, A. Bartholomew, A. Bauman, A. Saif, and P. F. Sale, “Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters,” J. Exp. Mar. Bio. Ecol., vol. 373, no. 1, pp. 72–78, 2009, doi: 10.1016/j.jembe.2009.03.009.10.1016/j.jembe.2009.03.009 Search in Google Scholar

42. B. A. Tayeh, M. W. Hasaniyah, A. M. Zeyad, and M. O. Yusuf, “Properties of concrete containing recycled seashells as cement partial replacement: A review,” J. Clean. Prod., vol. 237, p. 117723, 2019, doi: 10.1016/j.jclepro.2019.117723.10.1016/j.jclepro.2019.117723 Search in Google Scholar

43. Mahdi Majedi-Asl and Robabeh Jafari, “The Mathematical Modeling of Self-Purification of the Zarjoob River for Justification of Emission,” J. Environ. Sci. Eng., vol. 1, no. 1, 2012. Search in Google Scholar

44. C. Arenas, C. Leiva, L. F. Vilches, and H. Cifuentes, “Use of co-combustion bottom ash to design an acoustic absorbing material for highway noise barriers,” Waste Manag., vol. 33, no. 11, pp. 2316–2321, 2013, doi: 10.1016/j.wasman.2013.07.008.10.1016/j.wasman.2013.07.00823916843 Search in Google Scholar

45. K. H. Mo, U. J. Alengaram, M. Z. Jumaat, S. C. Lee, W. I. Goh, and C. W. Yuen, “Recycling of seashell waste in concrete: A review,” Constr. Build. Mater., vol. 162, no. February, pp. 751–764, 2018, doi: 10.1016/j.conbuildmat.2017.12.009.10.1016/j.conbuildmat.2017.12.009 Search in Google Scholar

46. A. Abdelouahed, H. Hebhoub, L. Kherraf, and M. Belachia, “Effect of Cockele Shells on Mortars Performance in Extreme Conditions,” Civ. Environ. Eng. Reports, vol. 29, no. 2, pp. 60–73, 2019, doi: 10.2478/ceer-2019-0017.10.2478/ceer-2019-0017 Search in Google Scholar

47. E. I. Yang, S. T. Yi, and Y. M. Leem, “Effect of oyster shell substituted for fine aggregate on concrete characteristics: Part I. Fundamental properties,” Cem. Concr. Res., vol. 35, no. 11, pp. 2175–2182, 2005, doi: 10.1016/j.cemconres.2005.03.016.10.1016/j.cemconres.2005.03.016 Search in Google Scholar

48. F. Wheaton, “Review of oyster shell properties. Part II. Thermal properties,” Aquac. Eng., vol. 37, no. 1, pp. 14–23, 2007, doi: 10.1016/j.aquaeng.2006.11.002.10.1016/j.aquaeng.2006.11.002 Search in Google Scholar

49. H.-Y. Chen, L. G. LI, Z.-M. Lai, A. K.-H. Kwan, P.-M. Chen, and P.-L. NG, “Effects of Crushed Oyster Shell on Strength and Durability of Marine Concrete Containing Fly Ash and Blastfurnace Slag.,” Mater. Sci., vol. 25, no. 1, 2019, doi: 10.5755/j01.ms.25.1.22437.10.5755/j01.ms.25.1.22437 Search in Google Scholar

50. W. T. Kuo, H. Y. Wang, C. Y. Shu, and D. S. Su, “Engineering properties of controlled low-strength materials containing waste oyster shells,” Constr. Build. Mater., vol. 46, pp. 128–133, 2013, doi: 10.1016/j.conbuildmat.2013.04.020.10.1016/j.conbuildmat.2013.04.020 Search in Google Scholar

51. U. G. Eziefula, J. C. Ezeh, and B. I. Eziefula, “Properties of seashell aggregate concrete: A review,” Constr. Build. Mater., vol. 192, no. March 2019, pp. 287–300, 2018, doi: 10.1016/j.conbuildmat.2018.10.096.10.1016/j.conbuildmat.2018.10.096 Search in Google Scholar

52. M. Azmi and M. Johari, “Cockle Shell Ash Replacement for Cement and Filler in Concrete,” Malaysian J. Civ. Eng., vol. 25, no. 2, pp. 201–211, 2013, doi: 10.11113/mjce.v25n2.303. Search in Google Scholar

53. A. P. Adewuyi, S. O. Franklin, and K. A. Ibrahim, “Utilization of mollusc shells for concrete production for sustainable environment,” Int. J. Sci. Eng. Res., vol. 6, no. 9, pp. 201–208, 2015. Search in Google Scholar

54. M. Olivia, A. A. Mifshella, and L. Darmayanti, “Mechanical properties of seashell concrete,” Procedia Eng., vol. 125, pp. 760–764, 2015, doi: 10.1016/j.proeng.2015.11.127.10.1016/j.proeng.2015.11.127 Search in Google Scholar

55. P. Lertwattanaruk, N. Makul, and C. Siripattarapravat, “Utilization of ground waste seashells in cement mortars for masonry and plastering,” J. Environ. Manage., vol. 111, pp. 133–141, 2012, doi: 10.1016/j.jenvman.2012.06.032.10.1016/j.jenvman.2012.06.03222841935 Search in Google Scholar

56. N. D. Binag, “Powdered Shell Wastes as Partial Substitute for Masonry Cement Mortar in Binder, Tiles and Bricks Production,” Int. J. Eng. Res. Technol., vol. 5, no. 7, pp. 70–77, 2016. Search in Google Scholar

57. G. O. Bamigboye, A. T. Nworgu, A. O. Odetoyan, M. Kareem, D. O. Enabulele, and D. E. Bassey, “Sustainable use of seashells as binder in concrete production: Prospect and challenges,” J. Build. Eng., vol. 34, no. April 2020, p. 101864, 2021, doi: 10.1016/j.jobe.2020.101864.10.1016/j.jobe.2020.101864 Search in Google Scholar

58. J. Burt, A. Bartholomew, A. Bauman, A. Saif, and P. F. Sale, “Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters,” J. Exp. Mar. Bio. Ecol., vol. 373, no. 1, pp. 72–78, 2009, doi: 10.1016/j.jembe.2009.03.009.10.1016/j.jembe.2009.03.009 Search in Google Scholar

59. C. Varhen, S. Carrillo, and G. Ruiz, “Experimental investigation of Peruvian scallop used as fine aggregate in concrete,” Constr. Build. Mater., vol. 136, pp. 533–540, 2017, doi: 10.1016/j.conbuildmat.2017.01.067.10.1016/j.conbuildmat.2017.01.067 Search in Google Scholar

60. G. Bamigboye, D. Enabulele, A. O. Odetoyan, M. A. Kareem, A. Nworgu, and D. Bassey, “Mechanical and durability assessment of concrete containing seashells: A review,” Cogent Eng., vol. 8, no. 1, 2021, doi: 10.1080/23311916.2021.1883830.10.1080/23311916.2021.1883830 Search in Google Scholar

61. S. Ha, J. W. Lee, S. H. Choi, S. H. Kim, K. Kim, and Y. Kim, “Calcination characteristics of oyster shells and their comparison with limestone from the perspective of waste recycling,” J. Mater. Cycles Waste Manag., vol. 21, no. 5, pp. 1075–1084, 2019, doi: 10.1007/s10163-019-00860-2.10.1007/s10163-019-00860-2 Search in Google Scholar

62. Y. Zhang, D. Chen, Y. Liang, K. Qu, K. Lu, S. Chen, and M. Kong, “Study on engineering properties of foam concrete containing waste seashell,” Constr. Build. Mater., vol. 260, p. 119896, 2020, doi: 10.1016/j.conbuildmat.2020.119896.10.1016/j.conbuildmat.2020.119896 Search in Google Scholar

63. E. I. Yang, M. Y. Kim, H. G. Park, and S. T. Yi, “Effect of partial replacement of sand with dry oyster shell on the long-term performance of concrete,” Constr. Build. Mater., vol. 24, no. 5, pp. 758–765, 2010, doi: 10.1016/j.conbuildmat.2009.10.032.10.1016/j.conbuildmat.2009.10.032 Search in Google Scholar

64. Y. J. N. Djobo, A. Elimbi, J. Dika Manga, and I. B. Djon Li Ndjock, “Partial replacement of volcanic ash by bauxite and calcined oyster shell in the synthesis of volcanic ash-based geopolymers,” Constr. Build. Mater., vol. 113, pp. 673–681, 2016, doi: 10.1016/j.conbuildmat.2016.03.104.10.1016/j.conbuildmat.2016.03.104 Search in Google Scholar

65. S. Cheng, Z. Shui, R. Yu, T. Sun, and X. Zhang, “Multiple influences of internal curing and supplementary cementitious materials on the shrinkage and microstructure development of reefs aggregate concrete,” Constr. Build. Mater., vol. 155, pp. 522–530, 2017, doi: 10.1016/j.conbuildmat.2017.08.037.10.1016/j.conbuildmat.2017.08.037 Search in Google Scholar

66. M. D. A. Thomas, R. D. Hooton, A. Scott, and H. Zibara, “The effect of supplementary cementitious materials on chloride binding in hardened cement paste,” Cem. Concr. Res., vol. 42, no. 1, pp. 1–7, 2012, doi: 10.1016/j.cemconres.2011.01.001.10.1016/j.cemconres.2011.01.001 Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials