Accès libre

Innovations in Poly(Vinyl Alcohol) Derived Nanomaterials

   | 22 sept. 2020
À propos de cet article


1. Doğan, E., Tokcan, P., Diken, M., Yilmaz, B., Kizilduman, B. and Sabaz P.: Synthesis, Characterization and Some Biological Properties of PVA/PVP/PN Hydrogel Nanocomposites: Antibacterial and Biocompatibility. Advances in Materials Science 19 (2019) 32-45.10.2478/adms-2019-0015Search in Google Scholar

2. Limpan, N., Prodpran, T., Benjakul, S. and Prasarpran, S.: Influences of degree of hydrolysis and molecular weight of poly (vinyl alcohol)(PVA) on properties of fish myofibrillar protein/PVA blend films. Food Hydrocolloids 29 (2012) 226-233.10.1016/j.foodhyd.2012.03.007Search in Google Scholar

3. Alexy, P., Káchová, D., Kršiak, M., Bakoš, D. and Šimková B.: Poly (vinyl alcohol) stabilisation in thermoplastic processing. Polymer Degradation and Stability 78(2002) 413-421.10.1016/S0141-3910(02)00177-5Search in Google Scholar

4. Malathi, J., Kumaravadivel, M., Brahmanandhan, G., Hema, M., Baskaran, R. and Selvasekarapandian, S.: Structural, thermal and electrical properties of PVA–LiCF3SO3 polymer electrolyte. Journal of Non-Crystalline Solids 356 (2010) 2277-2281.10.1016/j.jnoncrysol.2010.08.011Search in Google Scholar

5. Jenni, A., Holzer, L., Zurbriggen, R. and Herwegh, M.: Influence of polymers on microstructure and adhesive strength of cementitious tile adhesive mortars. Cement and Concrete Research 35 (2005) 35-50.10.1016/j.cemconres.2004.06.039Search in Google Scholar

6. Song, H.: Fabrication and characterisation of electrospun polyvinylidene fluoride (PVDF) nanocomposites for energy harvesting applications: Brunel University London (2016).Search in Google Scholar

7. El-Aasser, M.S.: Emulsion polymerization of vinyl acetate: Springer Science & Business Media (2012).Search in Google Scholar

8. Wang, R. and Wang Q, Li, L.: Evaporation behaviour of water and its plasticizing effect in modified poly (vinyl alcohol) systems. Polymer International 52 (2003) 1820-1826.10.1002/pi.1385Search in Google Scholar

9. Mok, C.F., Ching, Y.C., Muhamad, F., Osman. N.A.A., Dai Hai, N. and Hassan, C.R.C. Adsorption of Dyes Using Poly (vinyl alcohol)(PVA) and PVA-Based Polymer Composite Adsorbents: A Review. Journal of Polymers and the Environment (2020) 1-19.10.1007/s10924-020-01656-4Search in Google Scholar

10. Das, L., Das, P., Bhowal, A. and Bhattachariee, C.: Synthesis of hybrid hydrogel nano-polymer composite using Graphene oxide, Chitosan and PVA and its application in waste water treatment. Environmental Technology & Innovation (2020) 100664.10.1016/j.eti.2020.100664Search in Google Scholar

11. Murad, S.K. and Kadhim, S.H.: Synthesis, Characterization and Electrical Conductivity of Poly Vinyl Alcohol Graft Adipic Acid and Application as Sensors. International Journal of Pharmaceutical Research 12 (2020).10.31838/ijpr/2020.12.02.0038Search in Google Scholar

12. Madiwale, P.V., Singh, G.P., Biranje, S. and Adivarekar, R.: Preparation of Silk Fibroin/PVA Hydrogels Using Chemicalfree Cross-Linking for Tissue Engineering Applications. Journal of the Technical Textile 268 (2019).Search in Google Scholar

13. Yu, J., Buffet, J.-C. and O’Hare, D.: Aspect Ratio Control of Layered Double Hydroxide Nanosheets and their Application for High Oxygen Barrier Coating in Flexible Food Packaging. ACS Applied Materials & Interfaces (2020).10.1021/acsami.9b2198632045205Search in Google Scholar

14. Beşen, B.S.: Production of Disposable Antibacterial Textiles Via Application of Tea Tree Oil Encapsulated into Different Wall Materials. Fibers and Polymers. 20 (2019) 2587-2593.10.1007/s12221-019-9350-9Search in Google Scholar

15. Albayrak Ari. G. and Gülen, C.: The Effect of Cross-linking Technique on Membrane Performance for Direct Methanol Alkaline Fuel Cell Application. Journal of Natural & Applied Sciences 23 (2019).10.19113/sdufenbed.529398Search in Google Scholar

16. Chen, S., Lan, R., Humphreys, J. and Tao, S.: Perchlorate based ‘over-saturated gel electrolyte’for an aqueous rechargeable hybrid Zn-Li battery. ACS Applied Energy Materials. (2020).10.1021/acsaem.9b02249Search in Google Scholar

17. Peng, J. and Cheng, Q.: High‐performance nanocomposites inspired by nature. Advanced Materials 29 (2017): 1702959.10.1002/adma.20170295929058359Search in Google Scholar

18. Aslam, M., Kalyar, M.A. and Raza, Z.A.: Polyvinyl alcohol: a review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science 58 (2018): 2119-2132.10.1002/pen.24855Search in Google Scholar

19. Stammen, J.A., Williams, S., Ku, D.N. and Guldberg, R.E.: Mechanical properties of a novel PVA hydrogel in shear and unconfined compression. Biomaterials 22 (2001) 799-806.10.1016/S0142-9612(00)00242-8Search in Google Scholar

20. Squillace, O., Fong, R., Shepherd, O., Hind, J., Tellam, J., Steinke, N.-J., et al.: Influence of PVAc/PVA Hydrolysis on Additive Surface Activity. Polymers 12 (2020) 205.10.3390/polym12010205Search in Google Scholar

21. Marten, F.L.: Vinyl alcohol polymers. Kirk‐Othmer Encyclopedia of Chemical Technology. 2000.10.1002/0471238961.2209142513011820.a01Search in Google Scholar

22. Mansur, H.S., Oréfice, R.L. and Mansur, A,A.: Characterization of poly(vinyl alcohol)/poly(ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45 (2004) 7193-7202.10.1016/j.polymer.2004.08.036Search in Google Scholar

23. Lenney, W.E. and Iacoviello, J.G.: Vinyl acetate-ethylene copolymer emulsions prepared in the presence of a stabilizing system of a low molecular weight polyvinyl alcohol and a surfactant. Google Patents (1990).Search in Google Scholar

24. Tang, X. and Alavi S.; Recent advances in starch, polyvinyl alcohol based polymer blends, nanocomposites and their biodegradability. Carbohydrate polymers 85 (2011) 7-16.10.1016/j.carbpol.2011.01.030Search in Google Scholar

25. Daw, S., Basu, R.K. and Das, S.K.: Red mud reinforced polyvinyl alcohol composite films: synthesis, chemical, mechanical and thermal properties. SN Applied Sciences 1 (2019) 625.10.1007/s42452-019-0648-4Search in Google Scholar

26. Aslam, M., Kalyar, M.A. and Raza ZA.: Investigation of structural and thermal properties of distinct nanofillers-doped PVA composite films. Polymer Bulletin 76 (2019) 73-86.10.1007/s00289-018-2367-1Search in Google Scholar

27. Lee, S.-Y., Mohan, D.J., Kang, I.-A., Doh, G.-H., Lee, S. and Han, S.O.: Nanocellulose reinforced PVA composite films: effects of acid treatment and filler loading. Fibers and Polymers 10 (2009) 77-82.10.1007/s12221-009-0077-xSearch in Google Scholar

28. Pangon, A., Saesoo, S., Saengkrit, N., Ruktanonchai, U. and Intasanta, V.: Multicarboxylic acids as environment-friendly solvents and in situ crosslinkers for chitosan/PVA nanofibers with tunable physicochemical properties and biocompatibility. Carbohydrate polymers 138 (2016) 156-165.10.1016/j.carbpol.2015.11.039Search in Google Scholar

29. Chi, F., Hu, S., Xiong, J. and Wang, X.: Adsorption behavior of uranium on polyvinyl alcohol-gamidoxime: Physicochemical properties, kinetic and thermodynamic aspects. Science China Chemistry 56 (2013) 1495-1503.10.1007/s11426-013-5003-9Search in Google Scholar

30. Hou, R., Zhang, G., Du, G., Zhan, D., Cong, Y., Cheng, Y., et al.: Magnetic nanohydroxyapatite/PVA composite hydrogels for promoted osteoblast adhesion and proliferation. Colloids and Surfaces B: Biointerfaces 103 (2013) 318-325.10.1016/j.colsurfb.2012.10.067Search in Google Scholar

31. Li, Y., Yang, T., Yu, T., Zheng, L. and Liao K.: Synergistic effect of hybrid carbon nantube– graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. Journal of Materials Chemistry 21 (2011) 10844-10851.10.1039/c1jm11359cSearch in Google Scholar

32. Wang, J., Cheng, Q., Lin, L., Chen, L. and Jiang L.: Understanding the relationship of performance with nanofiller content in the biomimetic layered nanocomposites. Nanoscale 5 (2013) 6356-6362.10.1039/c3nr00801kSearch in Google Scholar

33. Jeong, J.S., Moon, J.-S., Jeon, S.Y., Park, J.H., Alegaonkar, P.S. and Yoo, J.B.: Mechanical properties of electrospun PVA/MWNTs composite nanofibers. Thin Solid Films 515 (2007) 5136-5141.10.1016/j.tsf.2006.10.058Search in Google Scholar

34. Liang, J., Huang, Y., Zhang, L., Wang, Y., Ma, Y., Guo, T., et al.: Molecular‐level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Advanced Functional Materials 19 (2009) 2297-2302.10.1002/adfm.200801776Search in Google Scholar

35. El Miri, N., El Achaby, M., Fihri, A., Larzek, M., Zahouily, M., Abdelouahdi, K., et al.: Synergistic effect of cellulose nanocrystals/graphene oxide nanosheets as functional hybrid nanofiller for enhancing properties of PVA nanocomposites. Carbohydrate polymers 137 (2016) 239-248.10.1016/j.carbpol.2015.10.072Search in Google Scholar

36. Zhang, J., Wang, J., Lin, T., Wang, C.H., Ghorbani, K., Fang, J., et al.: Magnetic and mechanical properties of polyvinyl alcohol (PVA) nanocomposites with hybrid nanofillers–graphene oxide tethered with magnetic Fe3O4 nanoparticles. Chemical Engineering Journal 237 (2014) 462-468.10.1016/j.cej.2013.10.055Search in Google Scholar

37. Peng, Z. and Kong, L.X.: A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polymer Degradation and Stability 92 (2007) 1061-1071.10.1016/j.polymdegradstab.2007.02.012Search in Google Scholar

38. Li, J., Li, Y., Song, Y., Niu, S. and Li, N.: Ultrasonic-assisted synthesis of polyvinyl alcohol/phytic acid polymer film and its thermal stability, mechanical properties and surface resistivity. Ultrasonics Sonochemistry 39 (2017) 853-862.10.1016/j.ultsonch.2017.06.017Search in Google Scholar

39. Kaboorani, A. and Riedl, B.: Improving performance of polyvinyl acetate (PVA) as a binder for wood by combination with melamine based adhesives. International Journal of Adhesion and Adhesives. 31 (2011) 605-611.10.1016/j.ijadhadh.2011.06.007Search in Google Scholar

40. Rowe, A.A., Tajvidi, M. and Gardner, D.J.: Thermal stability of cellulose nanomaterials and their composites with polyvinyl alcohol (PVA). Journal of Thermal Analysis and Calorimetry 126 (2016) 1371-1386.10.1007/s10973-016-5791-1Search in Google Scholar

41. Chen, W., Tao, X., Xue, P. and Cheng, X.: Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Applied Surface Science 252 (2005) 1404-1409.10.1016/j.apsusc.2005.02.138Search in Google Scholar

42. Huang, Y., Zheng, Y., Song, W., Ma, Y., Wu, J. and Fan, L.: Poly (vinyl pyrrolidone) wrapped multi-walled carbon nanotube/poly (vinyl alcohol) composite hydrogels. Composites Part A: Applied Science and Manufacturing 42 (2011) 1398-1405.10.1016/j.compositesa.2011.06.003Search in Google Scholar

43. Angjellari, M., Tamburri, E., Montaina, L., Natali, M., Passeri, D., Rossi, M., et al.: Beyond the concepts of nanocomposite and 3D printing: PVA and nanodiamonds for layer-by-layer additive manufacturing. Materials & Design 119 (2017) 12-21.10.1016/j.matdes.2017.01.051Search in Google Scholar

44. Varga, M., Stehlik, S., Kaman, O., Izak, T., Domonkos, M., Lee, D., et al. Templated diamond growth on porous carbon foam decorated with polyvinyl alcohol-nanodiamond composite. Carbon 119 (2017) 124-132.10.1016/j.carbon.2017.04.022Search in Google Scholar

45. Yu. Godovsky, D., Varfolomeev, A.V., Efremova, G.D., Cherepanov, V.M., Kapustin, G.A., Volkov, A.V. and Moskvina, M.A.: Magnetic properties of polyvinyl alcohol‐based composites containing iron oxide nanoparticles. Advanced Materials for Optics and Electronics 9 (1999) 87-93.10.1002/(SICI)1099-0712(199905/06)9:3<87::AID-AMO370>3.0.CO;2-ZSearch in Google Scholar

46. Deshmukh, K., Ahamed, M.B., Deshmukh, R.R., Pasha, S.K., Chidambaram, K., Sadasivuni, K.K., Ponnamma, D. and AlMaadeed, M.A.A.: Eco-friendly synthesis of graphene oxide reinforced hydroxypropyl methylcellulose/polyvinyl alcohol blend nanocomposites filled with zinc oxide nanoparticles for high-k capacitor applications. Polymer-Plastics Technology and Engineering 55 (2016) 1240-1253.10.1080/03602559.2015.1132451Search in Google Scholar

47. Mandal, M.K., Sant, S.B. and Bhattacharya, P.K.: Dehydration of aqueous acetonitrile solution by pervaporation using PVA–iron oxide nanocomposite membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects 373 (2011) 11-21.10.1016/j.colsurfa.2010.10.016Search in Google Scholar

48. Roy, A.S., Gupta, S., Sindhu, S. and Parveen. A.: Ramamurthy PC. Dielectric properties of novel PVA/ZnO hybrid nanocomposite films. Composites Part B: Engineering 47 (2013) 314-319.10.1016/j.compositesb.2012.10.029Search in Google Scholar

49. Wang, X., Lu, X., Liu, B., Chen, D., Tong, Y. and Shen, G.: Flexible energy‐storage devices: design consideration and recent progress. Advanced Materials 26 (2014) 4763-4782.10.1002/adma.201400910Search in Google Scholar

50. Choudhary, S.: Characterization of amorphous silica nanofiller effect on the structural, morphological, optical, thermal, dielectric and electrical properties of PVA–PVP blend based polymer nanocomposites for their flexible nanodielectric applications. Journal of Materials Science: Materials in Electronics 29 (2018) 10517-10534.10.1007/s10854-018-9116-ySearch in Google Scholar

51. Al-Gunaid, M.Q., Saeed, A.M., Subramani, N.K. and Madhukar, B.S.: Optical parameters, electrical permittivity and I–V characteristics of PVA/Cs 2 CuO 2 nanocomposite films for opto-electronic applications. Journal of Materials Science: Materials in Electronics 28 (2017) 8074-8086.10.1007/s10854-017-6513-6Search in Google Scholar

52. Koosha, M. and Mirzadeh, H.: Electrospinning, mechanical properties, and cell behavior study of chitosan/PVA nanofibers. Journal of Biomedical Materials Research Part A 103 (2015) 3081-3093.10.1002/jbm.a.35443Search in Google Scholar

53. Jiang, S., Chen, Y., Duan, G., Mei, C., Greiner A. and Agarwal, S.: Electrospun nanofiber reinforced composites: A review. Polymer Chemistry 9 (2018) 2685-2720.10.1039/C8PY00378ESearch in Google Scholar

54. Teo, W.-E. and Ramakrishna, S.: Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Composites Science and Technology 69 (2009) 1804-1817.10.1016/j.compscitech.2009.04.015Search in Google Scholar

55. Chronakis, I.S.: Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. Journal of Materials Processing Technology 167 (2005) 283-293.10.1016/j.jmatprotec.2005.06.053Search in Google Scholar

56. Wang, X., Fang, D., Yoon, K., Hsiao, B.S. and Chu, B.: High performance ultrafiltration composite membranes based on poly (vinyl alcohol) hydrogel coating on crosslinked nanofibrous poly (vinyl alcohol) scaffold. Journal of Membrane Science 278 (2006) 261-268.10.1016/j.memsci.2005.11.009Search in Google Scholar

57. Xiao, S., Feng, X. and Huang, R.Y.: Investigation of sorption properties and pervaporation behaviors under different operating conditions for trimesoyl chloride-crosslinked PVA membranes. Journal of Membrane Science 302 (2007) 36-44.10.1016/j.memsci.2007.06.012Search in Google Scholar

58. Vashisth, P. and Pruthi, V.: Synthesis and characterization of crosslinked gellan/PVA nanofibers for tissue engineering application. Materials Science and Engineering C 67 (2016) 304-312.10.1016/j.msec.2016.05.049Search in Google Scholar

59. Fang, X., Ma, H., Xiao, S., Shen, M., Guo, R., Cao, X., et al.: Facile immobilization of gold nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic applications. Journal of Materials Chemistry 21 (2011) 4493-4501.10.1039/c0jm03987jSearch in Google Scholar

60. Mollá, S. and Compañ, V.: Polyvinyl alcohol nanofiber reinforced Nafion membranes for fuel cell applications. Journal of Membrane Science 372 (2011) 191-200.10.1016/j.memsci.2011.02.001Search in Google Scholar

61. Koski, A., Yim, K. and Shivkumar, S.: Effect of molecular weight on fibrous PVA produced by electrospinning. Materials Letters 58 (2004):493-7.10.1016/S0167-577X(03)00532-9Search in Google Scholar

62. Zhang, C.L., Lv, K.P., Cong, H.P. and Yu, S.H.: Controlled assemblies of gold nanorods in PVA nanofiber matrix as flexible free‐standing SERS substrates by electrospinning. Small 8 (2012) 648-653.10.1002/smll.201102230Search in Google Scholar

63. Liu, N., Fang, G., Wan, J., Zhou, H., Long, H. and Zhao, X.: Electrospun PEDOT: PSS–PVA nanofiber based ultrahigh-strain sensors with controllable electrical conductivity. Journal of Materials Chemistry 21 (2011) 18962-18966.10.1039/c1jm14491jSearch in Google Scholar

64. Yuan, J., Mo, H., Wang, M., Li, L., Zhang, J. and Shen, J.: Reactive electrospinning of poly (vinyl alcohol) nanofibers. Journal of Applied PolymerSscience 124 (2012) 1067-1073.10.1002/app.33889Search in Google Scholar

65. Cho, D., Hoepker, N. and Frey, M.W.: Fabrication and characterization of conducting polyvinyl alcohol nanofibers. Materials Letters 68 (2012) 293-295.10.1016/j.matlet.2011.10.109Search in Google Scholar

66. Gong, J., Shao, C., Pan, Y., Gao, F. and Qu, L.: Preparation, characterization and swelling behavior of H3PW12O40/poly (vinyl alcohol) fiber aggregates produced by an electrospinning method. Materials Chemistry and Physics 86 (2004) 156-160.10.1016/j.matchemphys.2004.02.007Search in Google Scholar

67. El-aziz, A.A., El-Maghraby, A. and Taha, N.A.: Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn2+ ions from wastewater. Arabian Journal of Chemistry. 10 (2017) 1052-1060.10.1016/j.arabjc.2016.09.025Search in Google Scholar

68. Wang, H., Lu, X., Zhao, Y. and Wang, C.: Preparation and characterization of ZnS: Cu/PVA composite nanofibers via electrospinning. Materials Letters 60 (2006) 2480-2484.10.1016/j.matlet.2006.01.021Search in Google Scholar

69. Puguan, J.M.C., Kim, H.-S., Lee, K.-J. and Kim, H.: Low internal concentration polarization in forward osmosis membranes with hydrophilic crosslinked PVA nanofibers as porous support layer. Desalination 336 (2014) 24-31.10.1016/j.desal.2013.12.031Search in Google Scholar

70. Wu, S., Li, F., Wang, H., Fu, L., Zhang, B. and Li, G.: Effects of poly (vinyl alcohol)(PVA) content on preparation of novel thiol-functionalized mesoporous PVA/SiO2 composite nanofiber membranes and their application for adsorption of heavy metal ions from aqueous solution. Polymer 51 (2010) 6203-6211.10.1016/j.polymer.2010.10.015Search in Google Scholar

71. Lue, S.J., Pan, W.-H., Chang, C.-M. and Liu, Y.-L.: High-performance direct methanol alkaline fuel cells using potassium hydroxide-impregnated polyvinyl alcohol/carbon nano-tube electrolytes. Journal of Power Sources 202 (2012) 1-10.10.1016/j.jpowsour.2011.10.091Search in Google Scholar

72. Lue, S.J., Mahesh, K., Wang, W.-T., Chen, J.-Y. and Yang, C.-C.: Permeant transport properties and cell performance of potassium hydroxide doped poly (vinyl alcohol)/fumed silica nanocomposites. Journal of membrane science 367 (2011) 256-264.10.1016/j.memsci.2010.11.009Search in Google Scholar

73. Pan, W.-H., Lue, S,J,, Chang, C.-M. and Liu, Y.-L.: Alkali doped polyvinyl alcohol/multi-walled carbon nano-tube electrolyte for direct methanol alkaline fuel cell. Journal of membrane science 376 (2011) 225-232.10.1016/j.memsci.2011.04.026Search in Google Scholar

74. Li, P.C., Liao, G.M., Kumar, S.R., Shih, C.M., Yang, C.C., Wang, D.M. and Lue, S.J.: Fabrication and characterization of chitosan nanoparticle-incorporated quaternized poly (vinyl alcohol) composite membranes as solid electrolytes for direct methanol alkaline fuel cells. Electrochimica Acta 187 (2016) 616-628.10.1016/j.electacta.2015.11.117Search in Google Scholar

75. Chirizzi, D., Guascito, M.R., Filippo, E., Malitesta, C. and Tepore, A.: A novel nonenzymatic amperometric hydrogen peroxide sensor based on CuO@ Cu2O nanowires embedded into poly (vinyl alcohol). Talanta 147 (2016) 124-131.10.1016/j.talanta.2015.09.038Search in Google Scholar

76. Ajitha, B., Reddy, Y.A.K., Reddy, P.S., Jeon, H.-J. and Ahn, C.W.: Role of capping agents in controlling silver nanoparticles size, antibacterial activity and potential application as optical hydrogen peroxide sensor. RSC Advances 6 (2016) 36171-36179.10.1039/C6RA03766FSearch in Google Scholar

77. Kumar, D., Umrao, S., Mishra, H., Srivastava, R.R., Srivastava, M., Srivastava, A. and Srivastava, S.K.: Eu: Y2O3 highly dispersed fluorescent PVA film as turn off luminescent probe for enzyme free detection of H2O2. Sensors and Actuators B: Chemical 247 (2017) 170-178.10.1016/j.snb.2017.02.128Search in Google Scholar

78. Vasileva, P., Donkova, B., Karadjova, I. and Dushkin, C.; Synthesis of starch-stabilized silver nanoparticles and their application as a surface plasmon resonance-based sensor of hydrogen peroxide. Colloids and Surfaces A: Physicochemical and Engineering Aspects 382 (2011) 203-210.10.1016/j.colsurfa.2010.11.060Search in Google Scholar

79. Filippo, E., Serra, A. and Manno, D.: Poly (vinyl alcohol) capped silver nanoparticles as localized surface plasmon resonance-based hydrogen peroxide sensor. Sensors and Actuators B: Chemical 138 (2009) 625-630.10.1016/j.snb.2009.02.056Search in Google Scholar

80. Galeska, I., Kim, T.K., Patil, S.D., Bhardwaj, U., Chatttopadhyay, D., Papadimitrakopoulos, F. and Burgess, D.J.: Controlled release of dexamethasone from PLGA microspheres embedded within polyacid-containing PVA hydrogels. The AAPS Journal 7 (2005) E231-E240.10.1208/aapsj070122Search in Google Scholar

81. Hoare, T.R., Kohane, D.S.: Hydrogels in drug delivery: Progress and challenges. Polymer 49 (2008) 1993-2007.10.1016/j.polymer.2008.01.027Search in Google Scholar

82. Fredenberg, S., Wahlgren, M., Reslow, M. and Axelsson, A.: The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems—a review. International Journal of Pharmaceutics. 415 (2011) 34-52.10.1016/j.ijpharm.2011.05.049Search in Google Scholar

83. Zhang X., Tang, K. and Zheng, X.: Electrospinning and crosslinking of COL/PVA nanofibermicrosphere containing salicylic acid for drug delivery. Journal of Bionic Engineering 13 (2016) 143-149.10.1016/S1672-6529(14)60168-2Search in Google Scholar

84. Nugent, M.J. and Higginbotham, C.L.: Preparation of a novel freeze thawed poly (vinyl alcohol) composite hydrogel for drug delivery applications. European Journal of Pharmaceutics and Biopharmaceutics 67 (2007) 377-386.10.1016/j.ejpb.2007.02.014Search in Google Scholar

85. Lee, P.-J., Ho, C.-C., Hwang, C.-S. and Ding, S.-J.: Improved physicochemical properties and biocompatibility of stainless steel implants by PVA/ZrO2-based composite coatings. Surface and Coatings Technology 258 (2014) 374-380.10.1016/j.surfcoat.2014.08.066Search in Google Scholar

86. Wu, W., Wu, Z., Yu, T., Jiang, C. and Kim, W.-S.: Recent progress on magnetic iron oxide nanoparticles: synthesis, surface functional strategies and biomedical applications. Science and Technology of Advanced Materials. 16 (2015) 023501.10.1088/1468-6996/16/2/023501Search in Google Scholar

87. Mittal, V.: Polymer nanotubes nanocomposites: synthesis, properties and applications: John Wiley & Sons; (2014).10.1002/9781118945964Search in Google Scholar

88. Krishnamoorti, R. and Vaia, R.A.: Polymer nanocomposites. Journal of Polymer Science Part B: Polymer Physics 45 (2007) 3252-3256.10.1002/polb.21319Search in Google Scholar

89. Gerasin, V.A., Antipov, E.M., Karbushev, V.V., Kulichikhin, V.G., Karpacheva, G.P., Talroze, R.V. and Kudryavtsev, Y.V.: New approaches to the development of hybrid nanocomposites: from structural materials to high-tech applications. Russian Chemical Reviews 82 (2013) 303.10.1070/RC2013v082n04ABEH004322Search in Google Scholar

90. Ma, L.-J., Liu, Y. and Zhang, J.-H.: Modification of PVA-based compos-ite coating packaging material with nano-SiO2, Nano-TiO2 and liquid paraffin. Food Science 34 (2013) 341-346.Search in Google Scholar

91. Li, J., Shao, L., Zhou, X. and Wang, Y.: Fabrication of high strength PVA/rGO composite fibers by gel spinning. Rsc Advances 4 (2014) 43612-43618.10.1039/C4RA07295BSearch in Google Scholar

92. Ponnamma, D., Parangusan, H., Deshmukh, K., Kar, P., Muzaffar, A., Pasha, S.K., Ahamed, M.B. and Al-Maadeed, M.A.A.: Green synthesized materials for sensor, actuator, energy storage and energy generation: a review. Polymer-Plastics Technology and Materials 59 (2020) 1-62.10.1080/25740881.2019.1614327Search in Google Scholar

93. Raza, A., Wang, J., Yang, S., Si, Y. and Ding, B.: Hierarchical porous carbon nanofibers via electrospinning. Carbon Letters (Carbon Lett) 15(2014) 1-14.10.5714/CL.2014.15.1.001Search in Google Scholar

94. Raj, D.R., Prasanth, S., Vineeshkumar, T. and Sudarsanakumar, C.: Ammonia sensing properties of tapered plastic optical fiber coated with silver nanoparticles/PVP/PVA hybrid. Optics Communications 340 (2015) 86-92.10.1016/j.optcom.2014.11.092Search in Google Scholar

95. Kamoun, E.A., Kenawy, E.-R.S. and Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. Journal of Advanced Research 8 (2017) 217-233.10.1016/j.jare.2017.01.005Search in Google Scholar

96. Karami, H., Aminifar, A., Tavallali, H. and Namdar, Z.-A.: PVA-based sol–gel synthesis and characterization of CdO–ZnO nanocomposite. Journal of Cluster Science 21 (2011) 1-9.10.1007/s10876-009-0277-ySearch in Google Scholar

97. Dhanasekar, M., Jenefer, V., Nambiar, R.B., Babu, S.G., Selvam, S.P., Neppolian, B. and Bhat, S.V.: Ambient light antimicrobial activity of reduced graphene oxide supported metal doped TiO2 nanoparticles and their PVA based polymer nanocomposite films. Materials Research Bulletin 97 (2018) 238-243.10.1016/j.materresbull.2017.08.056Search in Google Scholar

98. Ananth, A.N., Daniel, S.K., Sironmani, T.A. and Umapathi, S.: PVA and BSA stabilized silver nanoparticles based surface–enhanced plasmon resonance probes for protein detection. Colloids and Surfaces B: Biointerfaces 85 (2011) 138-144.10.1016/j.colsurfb.2011.02.012Search in Google Scholar

99. Goenka, S., Sant, V. and Sant, S.: Graphene-based nanomaterials for drug delivery and tissue engineering. Journal of Controlled Release 173 (2014) 75-88.10.1016/j.jconrel.2013.10.017Search in Google Scholar

100. Zulkifli, F.H., Hussain, F.S.J., Zeyohannes, S.S., Rasad, M.S.B.A. and Yusuff, M.M.: A facile synthesis method of hydroxyethyl cellulose-silver nanoparticle scaffolds for skin tissue engineering applications. Materials Science and Engineering: C 79 (2017) 151-160.10.1016/j.msec.2017.05.028Search in Google Scholar

4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials