Accès libre

The Influence of Laser Alloying of Ti13Nb13Zr on Surface Topography and Properties

À propos de cet article

Citez

1. Suchanek K., Bartkowiak A., Gdowik A., Perzanowski M., Kąc S., Szaraniec B., Suchanek M., Marszałek M.: Crystalline hydroxyapatite coatings synthesized under hydrothermal conditions on modified titanium substrates. Materials Science and Engineering C 51 (2015) 57-63.10.1016/j.msec.2015.02.029Search in Google Scholar

2. Park J.B., Kim Y.K.: Metallic biomaterials. [In] Biomaterials: Principles and Applications, Park J.B. [ed.], CRC Press, Boca Raton, (2003) 1-21.10.1201/9781420040036.ch1Search in Google Scholar

3. Oldani C., Dominguez A.: Titanium as a biomaterial for implants. Recent Advances in Arthroplasty (2012) 149-162.10.5772/27413Search in Google Scholar

4. El-Rahman S.S.A.: Neuropathology of aluminum toxicity in rats (glutamate and GABA impairment). Pharmacological Research 47 3 (2003) 189-194.10.1016/S1043-6618(02)00336-5Search in Google Scholar

5. Bartmański M., Berk A., Wójcik A.: The Determinants of Morphology and Properties of the Nanohydroxyapatite Coating Deposited on the Ti13Nb13Zr Alloy by Electrophoretic Technique. Advances in Materials Science 16 3 (2016) 56-6610.1515/adms-2016-0017Search in Google Scholar

6. Jin M., Yao S., Wang L.-N., Qiao Y., Volinsky A.A.: Enhanced bond strength and bioactivity of interconnected 3D TiO2 nanoporous layer on titanium implants. Surface & Coatings Technology 304 (2016) 459-467.10.1016/j.surfcoat.2016.05.038Search in Google Scholar

7. İzmir M., Ercan B.: Anodization of titanium alloys for orthopedic applications. Frontiers of Chemical Science and Engineering (2019), 1-18.10.1007/s11705-018-1759-ySearch in Google Scholar

8. Vlcak P., Fojt J., Weiss Z., Kopeček J., Perina V.: The effect of nitrogen saturation on the corrosion behaviour of Ti-35Nb-7Zr-5Ta beta titanium alloy nitrided by ion implantation. Surface & Coatings Technology 358 (2019) 144-152.10.1016/j.surfcoat.2018.11.004Search in Google Scholar

9. Kashkarov E.B., Nikitenkov N.N., Sutygina A.N., Syrtanov M.S., Vilkhivskaya O.V., Pryamushko T.S., Kudiiarov V.N., Volesky L.: Effect of titanium ion implantation and deposition on hydrogenation behavior of Zr-1Nb alloy. Surface & Coatings Technology 308 (2016) 2-9.10.1016/j.surfcoat.2016.07.111Search in Google Scholar

10. Simka W. Mosiałek M., Nawrat G., Nowak P., Żak J., Szade J., Winiarski A., Maciej A., Szyk-Warszyńska L.: Electrochemical polishing of Ti–13Nb–13Zr alloy. Surface & Coatings Technology 213 (2012) 239–246.10.1016/j.surfcoat.2012.10.055Search in Google Scholar

11. Vasylyev M.A., Chenakin S.P., Yatsenko L.F.: Nitridation of TiA6AlA4V alloy under ultrasonic impact treatment in liquid nitrogen. Acta Materialia 60 (2012), 6223–6233.10.1016/j.actamat.2012.08.006Search in Google Scholar

12. Dumas V., Guignandon A., Vico L., Mauclair C., Zapata X., Linossier M.T., Bouleftour W., Granier J., Peyroche S., Dumas J.-C., Zahouani H., Rattner A.: Femtosecond laser nano/micro patterning of titanium influences mesenchymal stem cell adhesion and commitment. Biomedical Materials 10 (2015), 55002.10.1088/1748-6041/10/5/05500226334374Search in Google Scholar

13. Mitura S.: Novel Synthesis nanocrystalline Diamond Films. Innovative Processing of Films and Nanocrystalline Powders. IC Press (2002), 107-146.10.1142/9781860949623_0004Search in Google Scholar

14. Drevet R., Ben Jaber N., Fauréa J., Taraa A., Ben Cheikh Larbib A., Benhayounea H.: Electrophoretic deposition (EPD) of nano-hydroxyapatite coatings with improved mechanical properties on prosthetic Ti6Al4V sustrates. Surface & Coatings Technology 301 (2016), 94-99.10.1016/j.surfcoat.2015.12.058Search in Google Scholar

15. Bartmański M, Cieslik B., Glodowska J., Kalka P., Pawlowski L., Piepera M., Zielinski A.: Electrophoretic deposition (EPD) of nanohydroxyapatite - nanosilver coatings on Ti13Zr13Nb alloy. Ceramics International 43 15 (2017), 11820-11829.10.1016/j.ceramint.2017.06.026Search in Google Scholar

16. Łatka L., Pawłowski L., Chicot D., Pierlot C., Petit F.: Mechanical properties of suspension plasma sprayed hydroxyapatite coatings submitted to simulated body fluid. Surface and Coatings Technology, 205 (2010), 954-960.10.1016/j.surfcoat.2010.06.025Search in Google Scholar

17. Jazdzewska M., Majkowska-Marzec B.: Hydroxyapatite deposition on the laser modified Ti13Nb13Zr alloy. Advances in Materials Science 17(4) (2017), 5-13.10.1515/adms-2017-0017Search in Google Scholar

18. Landowski M.: Influence of parameters of laser beam welding on structure of 2205 duplex stainless steel, Advances in Materials Science 19 (1) (2019), 21-31.10.2478/adms-2019-0002Search in Google Scholar

19. Kusinski J., Kac S., Kopia A., Radziszewska A., Rozmus-Górnikowska M., Major B., Major L., Marczak J., Lisiecki A.: Laser modification of the materials surface layer – a review paper. Bulletin of the Polish Academy of Sciences Technical Sciences. Technical Sciences 60 4 (2012) 711-728.10.2478/v10175-012-0083-9Search in Google Scholar

20. Adesina O., Popoola P., Fatoba O.: Laser Surface Modification — A Focus on the Wear Degradation of Titanium Alloy. [In] Fiber Laser, Paul M. [ed.], Intech Open, 2016, 367-381.10.5772/61737Search in Google Scholar

21. Diao Y., Zhang K.: Microstructure and corrosion resistance of TC2 Ti alloy by laser cladding with Ti/TiC/TiB2 powders. Applied Surface Science 352 (2015) 163-168.10.1016/j.apsusc.2015.04.030Search in Google Scholar

22. Milovanović D. S., Petrović S. M., Shulepov M. A., Tarasenko V. F., Radak B. B., Miljanić Š. S., Trtica M. S.: Titanium alloy surface modification by excimer laser irradiation. Optics & Laser Technology 54 (2013), 419-427.10.1016/j.optlastec.2013.06.025Search in Google Scholar

23. Ashan M.S., Lee M.S.: Formation mechanism of self-organized nanogratings on a titanium surface using femtosecond laser pulses. Optik - International Journal for Light and Electron Optics 126 (2012), 5979-5983.Search in Google Scholar

24. Kiran Kumar K., Samuel G.L., Shunmugam M.S.: Theoretical and experimental investigations of ultra-short pulse laser interaction on Ti6Al4V alloy. Journal of Materials Processing Technology 263 (2019), 266–275.10.1016/j.jmatprotec.2018.08.028Search in Google Scholar

25. Mohazzab B.F., Jaleh B., Kakuee O., Fattah-alhosseini A.: Formation of titanium carbide on the titanium surface using laser ablation in n-heptane and investigating its corrosion resistance. Applied Surface Science 478 (2019), 623-635.10.1016/j.apsusc.2019.01.259Search in Google Scholar

26. Kuczyńska-Zemła D., Kwaśniak P., Sotniczuk A., Spychalski M., Wieciński P., Zdunek J., Ostrowski R., Garbacz H.: Microstructure and mechanical properties of titanium subjected to direct laser interference lithography. Surface and Coatings Technology 364 (2019), 422-429.10.1016/j.surfcoat.2019.02.026Search in Google Scholar

27. Sun D., Gu D., Lin K., Ma J., Chen W., Huang J., Sun X., Chu M.: Selective laser melting of titanium parts: Influence of laser process parameters on macro- and microstructures and tensile property. Powder Technology 342 (2019), 371-379.10.1016/j.powtec.2018.09.090Search in Google Scholar

28. Sun J., Zhu X., Qiu L., Wang F., Yang Y., Guo L.: The microstructure transformation of selective laser melted Ti-6Al-4V alloy. Materials Today Communications 19 (2019), 277-285.10.1016/j.mtcomm.2019.02.006Search in Google Scholar

29. Fan Z., Feng H.: Study on selective laser melting and heat treatment of Ti-6Al-4V alloy. Results in Physics 10 (2018), 660-664.10.1016/j.rinp.2018.07.008Search in Google Scholar

30. Tong Y., Yang N., Han K., Yuan S., Zhou J., Chen X., Shi L., Li W., Xudong R.: Surface morphology of titanium alloy with monolayer microparticles under different single pulse laser Energy. Optik 174 (2018), 766-775.10.1016/j.ijleo.2018.08.077Search in Google Scholar

31. Pou P., Riveiro A., del Val J., Comesaña R., Penide J., Arias-González F., Soto R., Lusquiños F., Pou J.: Laser surface texturing of Titanium for bioengineering applications. Procedia Manufacturing 13 (2017), 694-701.10.1016/j.promfg.2017.09.102Search in Google Scholar

32. Gursel A.: Crack risk in Nd: YAG laser welding of Ti-6Al-4V alloy. Materials Letters 197 (2017), 233-235.10.1016/j.matlet.2016.12.112Search in Google Scholar

33. Zhou L., Yuan T., Li R., Tang J., Wang G., Guo K., Yuan J.: Densification, microstructure evolution and fatigue behavior of Ti-13Nb-13Zr alloy processed by selective laser melting. Powder Technology 342 (2019), 11-23.10.1016/j.powtec.2018.09.073Search in Google Scholar

34. Łatka L., Cattini A., Chicot D., Pawłowski L., Kozerski S., Petit F., Denoirjean A.: Mechanical properties of yttria- and ceria-stabilized zirconia coatings obtained by suspension plasma spraying. Journal of Thermal Spray Technology 22 (2013), 125-130.10.1007/s11666-012-9874-7Search in Google Scholar

35. Pharr G. M., Oliver W. C.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research 19 1 (2004), 3-20.10.1557/jmr.2004.0002Search in Google Scholar

36. Rogala-Wielgus D., Majkowska-Marzec B., Bartmański M.: Wpływ stopowania laserowego z użyciem nanorurek węglowych stopu Ti13Nb13Zr do zastosowań biomedycznych na jego wybrane własności mechaniczne. Przegląd Spawalnictwa 90 7 (2018), 18-23.10.26628/ps.v90i7.935Search in Google Scholar

37. Heise S., Höhlinger M., Torres Y., José J., Palacio P., Antonio J., Ortiz R., Wagener V., Virtanen S., Boccaccini A.R.: Electrophoretic deposition and characterization of chitosan / bioactive glass composite coatings on Mg alloy substrates, Electrochimica Acta 232 (2017), 456–464.10.1016/j.electacta.2017.02.081Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials