[
1. A. Mohammadkhani and S. L. Borgland, Cellular and behavioral basis of cannabinoid and opioid interactions: Implications for opioid dependence and withdrawal, J. Neurosci. Res. 100 (2022) 278–296; https://doi.org/10.1002/jnr.2477010.1002/jnr.24770
]Search in Google Scholar
[
2. M. Ghonghadze, K. Pachkoria, M. Okujava, N. Antelava and N. Gongadze, Endocannabinoids receptors mediated central and peripheral effects, Georgian Med. News 298 (2020) 137–143.
]Search in Google Scholar
[
3. E. E. Bagley and S. L. Ingram, Endogenous opioid peptides in the descending pain modulatory circuit, Neuropharmacology 173 (2020) Article ID 108131; https://doi.org/10.1016/j.neuropharm.2020.10813110.1016/j.neuropharm.2020.108131
]Search in Google Scholar
[
4. G. Corder, D. D. Castro, M. R. Bruchas and G. Scherrer, Endogenous and exogenous opioids in pain, Annu. Rev. Neurosci. 41 (2018) 453–473; https://doi.org/10.1146/annurev-neuro-080317-06152210.1146/annurev-neuro-080317-061522
]Search in Google Scholar
[
5. S. Narouze, Antinociception mechanisms of action of cannabinoid-based medicine: an overview for anesthesiologists and pain physicians, Reg. Anesth. Pain Med. 46(3) (2021) 240–250; https://doi.org/10.1136/rapm-2020-10211410.1136/rapm-2020-102114
]Search in Google Scholar
[
6. W. Fujita, I. Gomes and L. A. Devi, Revolution in GPCR signaling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10, Br. J. Pharmacol. 171(18) (2014) 4155–4176; https://doi.org/10.1111/bph.1279810.1111/bph.12798
]Search in Google Scholar
[
7. S. Sierra, A. Gupta, I. Gomes, M. Fowkes, A. Ram, E. N. Bobeck, and L. A. Devi, Targeting cannabinoid 1 and delta-opioid receptor heteromers alleviates chemotherapy-induced neuropathic pain, ACS Pharmacol. Transl. Sci. 2 (2019) 219–229; https://doi.org/10.1021/acsptsci.9b0000810.1021/acsptsci.9b00008
]Search in Google Scholar
[
8. M. M. Ibrahim, F. Porreca, J. Lai, P. J. Albrecht, F. L. Rice, A. Khodorova, G. Davar, A. Makriyannis, T. W. Vanderah, H. P. Mata and T. P. Malan, CB2 cannabinoid receptor activation produces anti-nociception by stimulating peripheral release of endogenous opioids, Proc. Natl. Acad. Sci. USA 102(8) (2005) 3093–3098; https://doi.org/10.1073/pnas.040988810210.1073/pnas.0409888102
]Search in Google Scholar
[
9. S. P. Welch and D. L. Stevens, Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice, J. Pharmacol. Exp. Ther. 262(1) (1992) 10–18.
]Search in Google Scholar
[
10. F. L. Smith, D. Cichewicz, Z. L. Martin and S. P. Welch, The enhancement of morphine antinociception in mice by delta9-tetrahydrocannabinol, Pharmacol. Biochem. Behav. 60(2) (1998) 559–566; https://doi.org/10.1016/s0091-3057(98)00012-410.1016/S0091-3057(98)00012-4
]Search in Google Scholar
[
11. O. Gunduz, H. C. Karadag and A. Ulugol, Synergistic anti-allodynic effects of nociceptin/orphanin FQ and cannabinoid systems in neuropathic mice, Pharmacol. Biochem. Behav. 99(4) (2011) 540–544; https://doi.org/10.1016/j.pbb.2011.05.02910.1016/j.pbb.2011.05.02921664922
]Search in Google Scholar
[
12. J. M. Vigil, S. S. Stith, I. M. Adams and A. P. Reeve, Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study, PLoS One 12 (2017) e0187795 (13 pages); https://doi.org/10.1371/journal.pone.018779510.1371/journal.pone.0187795569060929145417
]Search in Google Scholar
[
13. G. N. Quiñonez-Bastidas, O. Palomino-Hernández, M. López-Ortíz, H. I. Rocha-González, G. M. González-Anduaga, I. Regla and A. Navarrete, Antiallodynic effect of PhAR-DBH-Me involves cannabinoid and TRPV1 receptors, Pharmacol. Res. Perspect. 8 (2020) e00663 (12 pages); https://doi.org/10.1002/prp2.66310.1002/prp2.663
]Search in Google Scholar
[
14. M. Lopez-Ortiz, A. Herrera-Solis, A. Luviano-Jardon, N. Reyes-Prieto, I. Castillo, I. Monsalvo, P. Demare, M. Méndez-Díaz, I. Regla and O. Prospéro-García, Chemoenzymatic synthesis and cannabinoid activity of a new diazabicyclic amide of phenylacetylricinoleic acid, Bioorg. Med. Chem. Lett. 20(11) (2010) 3231–3234; https://doi.org/10.1016/j.bmcl.2010.04.07410.1016/j.bmcl.2010.04.074
]Search in Google Scholar
[
15. S. H. Kim and J. M. Chung, An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat, Pain 50 (1992) 355–363; https://doi.org/10.1016/0304-3959(92)90041-910.1016/0304-3959(92)90041-9
]Search in Google Scholar
[
16. N. Authier, J. P. Gillet, J. Fialip, A. Eschalier and F. Coudore, An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections, Exp. Neurol. 182(1) (2003) 12–20; https://doi.org/10.1016/s0014-4886(03)00003-710.1016/S0014-4886(03)00003-7
]Search in Google Scholar
[
17. S. R. Chaplan, F. W. Bach, J. W. Pogrel, J. M. Chung and T. L. Yaksh, Quantitative assessment of tactile allodynia in the rat paw, J. Neurosci. Meth. 53(1) (1994) 55–63; https://doi.org/10.1016/0165-0270(94)90144-910.1016/0165-0270(94)90144-9
]Search in Google Scholar
[
18. R. J. Tallarida, Drug Synergism and Dose-Effect Data Analysis, in Drug Synergism and Dose-Effect Data Analysis, 1st ed., Chapman and Hall/CRC, New York 2000.10.1201/9781420036107
]Search in Google Scholar
[
19. J. Balderas-López, A. Navarrete and A. Alfaro, Graded Dose-Response Curves, in Pharmacometrics, 1st ed., Universidad Nacional Autonóma de México, Mexico City 2017.
]Search in Google Scholar
[
20. S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher and P. Maire, The Hill equation: a review of its capabilities in pharmacological modelling, Fundam. Clin. Pharmacol. 22(6) (2008) 633–648; https://doi.org/10.1111/j.1472-8206.2008.00633.x10.1111/j.1472-8206.2008.00633.x19049668
]Search in Google Scholar
[
21. S. de J. Acosta-Cota, E. M. Aguilar-Medina, R. Ramos-Payána, J. G. Rendón Maldonado, J. G. Romero-Quintana, J. Montes-Avila, J. I. Sarmiento-Sánchez, C. G. Plazas-Guerrero, M. J.Vergara-Jiménez, A. Sánchez-López, D. Centurión and U. Osuna-Martínez, Therapeutic effect of treatment with metformin and/or 4-hydroxychalcone in male Wistar rats with nonalcoholic fatty liver disease, Eur. J. Pharmacol. 863 (2019) Article ID 172699 (14 pages); https://doi.org/10.1016/j.ejphar.2019.17269910.1016/j.ejphar.2019.17269931563650
]Search in Google Scholar
[
22. R. A. Gibson, J.-A Lim, S. J. Choi, L. Flores, L. Clinton, D. Bali, S. Young, A. Asokan, B. Sun and P. S. Kishnani, Characterization of liver GSD IX g2 pathophysiology in a novel Phkg2−/− mouse model, Mol. Genet. Metab. 133(3) (2021) 269–276; https://doi.org/10.1016/j.ymgme.2021.05.00810.1016/j.ymgme.2021.05.00834083142
]Search in Google Scholar
[
23. N. P. Kazantzis, S. L. Casey, P. W. Seow, V. A. Mitchell and C. W. Vaughan, Opioid and cannabinoid synergy in a mouse neuropathic pain model, Br. J. Pharmacol. 173(16) (2016) 2521–2531; https://doi.org/10.1111/bph.1353410.1111/bph.13534495995627278681
]Search in Google Scholar
[
24. M. Déciga-Campos, P. M. Ramírez-Marín and F. J. López-Muñoz, Synergistic antinociceptive interaction between palmitoylethanolamide and tramadol in the mouse formalin test, Eur. J. Pharmacol. 765 (2015) 68–74; https://doi.org/10.1016/j.ejphar.2015.08.02510.1016/j.ejphar.2015.08.02526297302
]Search in Google Scholar
[
25. L. Roulet, V. Rollason, J. Desmeules and V. Piguet, Tapentadol versus tramadol: A narrative and comparative review of their pharmacological, efficacy and safety profiles in adult patients, Drugs 81 (2021) 1257–1272; https://doi.org/10.1007/s40265-021-01515-z10.1007/s40265-021-01515-z831892934196947
]Search in Google Scholar
[
26. N. T. Snider, M. J. Sikora, C. Sridar, T. J. Feuerstein, J. M. Rae and P. F. Hollenberg, The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6, J. Pharmacol. Exp. Ther. 327(2) (2008) 538–545; https://doi.org/10.1124/jpet.108.14179610.1124/jpet.108.141796270457918698000
]Search in Google Scholar
[
27. N. T. Snider, J. A. Nast, L. A. Tesmer and P. F. Hollenberg, A cytochrome P450-derived epoxygenated metabolite of anandamide is a potent cannabinoid receptor 2-selective agonist, Mol. Pharmacol. 75(4) (2009) 965–972; https://doi.org/10.1124/mol.108.05343910.1124/mol.108.053439268493519171674
]Search in Google Scholar
[
28. M. Pratt-Hyatt, H. Zhang, N. T. Snider and P. F. Hollenberg, Effects of a commonly occurring genetic polymorphism of human CYP3A4 (I118V) on the metabolism of anandamide, Drug Metab. Dispos. 38(11) (2010) 2075–2082; https://doi.org/10.1124/dmd.110.03371210.1124/dmd.110.033712296739520702771
]Search in Google Scholar
[
29. M. Vázquez, N. Guevara, C. Maldonado, P. C. Guido and P. Schaiquevich, Potential pharmaco-kinetic drug-drug interactions between cannabinoids and drugs used for chronic pain, Biomed. Res. Int. 2020 (2020) Article ID 3902740 (9 pages); https://doi.org/10.1155/2020/390274010.1155/2020/3902740744322032855964
]Search in Google Scholar
[
30. J. Guindon, Y. Lai, S. M. Takacs, H. B. Bradshaw and A. G. Hohmann, Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment, Pharmacol. Res. 67(1) (2013) 94–109; https://doi.org/10.1016/j.phrs.2012.10.01310.1016/j.phrs.2012.10.013352579023127915
]Search in Google Scholar
[
31. H. L. Blanton, J. Brelsfoard, N. DeTurk, K. Pruitt, M. Narasimhan, D. J. Morgan and J. Guindon, Cannabinoids: Current and future options to treat chronic and chemotherapy-induced neuropathic pain, Drugs 79 (2019) 969–995; https://doi.org/10.1007/s40265-019-01132-x10.1007/s40265-019-01132-x831046431127530
]Search in Google Scholar
[
32. D. da Fonseca Pacheco, A. Klein, A. P. de Castro, C. M. da Fonseca Pacheco, J. N. de Francischi and I. D. G. Duarte, The mu-opioid receptor agonist morphine, but not agonists at delta- or kappa--opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors, Br. J. Pharmacol. 154(5) (2008) 1143–1149; https://doi.org/10.1038/bjp.2008.17510.1038/bjp.2008.175246557418469844
]Search in Google Scholar
[
33. B. Wiese and A. R. Wilson-Poe, Emerging evidence for cannabis’ role in opioid use disorder, Cannabis Cannabinoid Res. 3(1) (2018) 179–189; https://doi.org/10.1089/can.2018.002210.1089/can.2018.0022613556230221197
]Search in Google Scholar
[
34. N. Petejova and A. Martinek, Acute kidney injury following acute pancreatitis: A review, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 157(2) (2013) 105–113; https://doi.org/10.5507/bp.2013.04810.5507/bp.2013.048
]Search in Google Scholar
[
35. J. Zaias, M. Mineau, C. Cray, D. Yoon and N. H. Altman, Reference values for serum proteins of common laboratory rodent strains, J. Am. Assoc. Lab. Anim. Sci. 48(4) (2009) 387–390.
]Search in Google Scholar
[
36. J. S. Hochman and N. Q. Brill, Chronic marihuana usage and liver function, Lancet 298(7728) (1971) 818–819; https://doi.org/10.1016/s0140-6736(71)92771-110.1016/S0140-6736(71)92771-1
]Search in Google Scholar
[
37. L. E. Ewing, C. M. Skinner, C. M. Quick, S. Kennon-McGill, M. R. McGill, L. A. Walker, M. A. ElSohly, B. J. Gurley and I. Koturbash, Hepatotoxicity of a cannabidiol-rich cannabis extract in the mouse model, Molecules 24(9) (2019) Article ID 1694 (17 pages); https://doi.org/10.3390/molecules2409169410.3390/molecules24091694653999031052254
]Search in Google Scholar
[
38. Y.-C. Hsu, C.-C. Lei, Y.-H. Shih, C. Ho and C.-L. Lin, Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice, Am. J. Med. Sci. 349(2) (2015) 162–168; https://doi.org/10.1097/MAJ.000000000000035210.1097/MAJ.000000000000035225474224
]Search in Google Scholar
[
39. E. C. Morais Rateke, C. Matiollo, E. Q. de Andrade Moura, M. Andrigueti, C. Maccali, J. S. Fonseca, S. M. F. Canova, J. L. Narciso-Schiavon and L. L. Schiavon, Low sodium to potassium ratio in spot urine sample is associated with progression to acute kidney injury and mortality in hospitalized patients with cirrhosis, Dig. Liver Dis. 53(9) (2021) 1159–1166; https://doi.org/10.1016/j.dld.2020.12.11710.1016/j.dld.2020.12.11733446446
]Search in Google Scholar
[
40. M. Boada, A. Pippo, M. Rodriguez-Milhomens, V. González, R. Higgie, V. Mérola, J. M. Carissi and R. Silvariño, Hiperpotasemia severa en emergencia: Manifestaciones clínicas y manejo terapéutico a propósito de tres casos [Severe hyperkalemia in emergency: Clinical manifestations and therapeutic management of three cases], Arch. Med. Int. 34 (2012) 91–94.
]Search in Google Scholar
[
41. Y. Koura, A. Ichihara, Y. Tada, Y. Kaneshiro, H. Okada, C. J. Temm, M. Hayashi and T. Saruta, Anandamide decreases glomerular filtration rate through predominant vasodilation of efferent arterioles in rat kidneys, J. Am. Soc. Nephrol. 15(6) (2004) 1488–1494; https://doi.org/10.1097/01.asn.0000130561.82631.bc10.1097/01.ASN.0000130561.82631.BC
]Search in Google Scholar
[
42. J. S. Kim, J. Y. Son, K. S. Kim, H. J. Lim, M.-Y. Ahn, S. J. Kwack, Y.-M. Kim, K. Y. Lee, J. Lee, B. M. Lee and H. S. Kim, Hepatic damage exacerbates cisplatin-induced acute kidney injury in Sprague--Dawley rats, J. Toxicol. Environ. Health A 81(11) (2018) 397–407; https://doi.org/10.1080/15287394.2018.145117910.1080/15287394.2018.145117929557720
]Search in Google Scholar
[
43. C. J. Lucas, P. Galettis and J. Schneider, The pharmacokinetics and the pharmacodynamics of cannabinoids, Br. J. Clin. Pharmacol. 84(11) (2018) 2477–2482; https://doi.org/10.1111/bcp.1371010.1111/bcp.13710617769830001569
]Search in Google Scholar
[
44. P. Pacher and R. Mechoulam, Is lipid signaling through cannabinoid 2 receptors part of a protective system?, Prog. Lipid. Res. 50 (2011) 193–211; https://doi.org/10.1016/j.plipres.2011.01.00110.1016/j.plipres.2011.01.001306263821295074
]Search in Google Scholar
[
45. M. Rajesh, H. Pan, P. Mukhopadhyay, S. Bátkai, D. Osei-Hyiaman, G. Haskó, L. Liaudet, B. Gao and P. Pacher, Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis, J. Leukoc. Biol. 82(6) (2007) 1382–1389; https://doi.org/10.1189/jlb.030718010.1189/jlb.0307180222547617652447
]Search in Google Scholar
[
46. J. S. Richter, V. Quenardelle, O. Rouyer, J. S. Raul, R. Beaujeux, B. Gény and V. Wolff, A systematic review of the complex effects of cannabinoids on cerebral and peripheral circulation in animal models, Front. Physiol. 9 (2018) Article ID 622 (13 pages); https://doi.org/10.3389/fphys.2018.0062210.3389/fphys.2018.00622598689629896112
]Search in Google Scholar
[
47. P. Pacher, S. Steffens, G. Haskó, T. H. Schindler and G. Kunos, Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly, Nat. Rev. Cardiol. 15 (2018) 151–166; https://doi.org/10.1038/nrcardio.2017.13010.1038/nrcardio.2017.13028905873
]Search in Google Scholar
[
48. J. A. Wagner, K. Varga, E. F. Ellis, B. A. Rzigalinski, B. R. Martin and G. Kunos, Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock, Nature 390(6659) (1997) 518–521; https://doi.org/10.1038/3737110.1038/373719394002
]Search in Google Scholar