1. bookVolumen 72 (2022): Edición 4 (December 2022)
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés
Acceso abierto

Synergistic action between a synthetic cannabinoid compound and tramadol in neuropathic pain rats

Publicado en línea: 18 Oct 2022
Volumen & Edición: Volumen 72 (2022) - Edición 4 (December 2022)
Páginas: 509 - 527
Aceptado: 21 Apr 2022
Detalles de la revista
License
Formato
Revista
eISSN
1846-9558
Primera edición
28 Feb 2007
Calendario de la edición
4 veces al año
Idiomas
Inglés

1. A. Mohammadkhani and S. L. Borgland, Cellular and behavioral basis of cannabinoid and opioid interactions: Implications for opioid dependence and withdrawal, J. Neurosci. Res. 100 (2022) 278–296; https://doi.org/10.1002/jnr.2477010.1002/jnr.24770 Search in Google Scholar

2. M. Ghonghadze, K. Pachkoria, M. Okujava, N. Antelava and N. Gongadze, Endocannabinoids receptors mediated central and peripheral effects, Georgian Med. News 298 (2020) 137–143. Search in Google Scholar

3. E. E. Bagley and S. L. Ingram, Endogenous opioid peptides in the descending pain modulatory circuit, Neuropharmacology 173 (2020) Article ID 108131; https://doi.org/10.1016/j.neuropharm.2020.10813110.1016/j.neuropharm.2020.108131 Search in Google Scholar

4. G. Corder, D. D. Castro, M. R. Bruchas and G. Scherrer, Endogenous and exogenous opioids in pain, Annu. Rev. Neurosci. 41 (2018) 453–473; https://doi.org/10.1146/annurev-neuro-080317-06152210.1146/annurev-neuro-080317-061522 Search in Google Scholar

5. S. Narouze, Antinociception mechanisms of action of cannabinoid-based medicine: an overview for anesthesiologists and pain physicians, Reg. Anesth. Pain Med. 46(3) (2021) 240–250; https://doi.org/10.1136/rapm-2020-10211410.1136/rapm-2020-102114 Search in Google Scholar

6. W. Fujita, I. Gomes and L. A. Devi, Revolution in GPCR signaling: opioid receptor heteromers as novel therapeutic targets: IUPHAR review 10, Br. J. Pharmacol. 171(18) (2014) 4155–4176; https://doi.org/10.1111/bph.1279810.1111/bph.12798 Search in Google Scholar

7. S. Sierra, A. Gupta, I. Gomes, M. Fowkes, A. Ram, E. N. Bobeck, and L. A. Devi, Targeting cannabinoid 1 and delta-opioid receptor heteromers alleviates chemotherapy-induced neuropathic pain, ACS Pharmacol. Transl. Sci. 2 (2019) 219–229; https://doi.org/10.1021/acsptsci.9b0000810.1021/acsptsci.9b00008 Search in Google Scholar

8. M. M. Ibrahim, F. Porreca, J. Lai, P. J. Albrecht, F. L. Rice, A. Khodorova, G. Davar, A. Makriyannis, T. W. Vanderah, H. P. Mata and T. P. Malan, CB2 cannabinoid receptor activation produces anti-nociception by stimulating peripheral release of endogenous opioids, Proc. Natl. Acad. Sci. USA 102(8) (2005) 3093–3098; https://doi.org/10.1073/pnas.040988810210.1073/pnas.0409888102 Search in Google Scholar

9. S. P. Welch and D. L. Stevens, Antinociceptive activity of intrathecally administered cannabinoids alone, and in combination with morphine, in mice, J. Pharmacol. Exp. Ther. 262(1) (1992) 10–18. Search in Google Scholar

10. F. L. Smith, D. Cichewicz, Z. L. Martin and S. P. Welch, The enhancement of morphine antinociception in mice by delta9-tetrahydrocannabinol, Pharmacol. Biochem. Behav. 60(2) (1998) 559–566; https://doi.org/10.1016/s0091-3057(98)00012-410.1016/S0091-3057(98)00012-4 Search in Google Scholar

11. O. Gunduz, H. C. Karadag and A. Ulugol, Synergistic anti-allodynic effects of nociceptin/orphanin FQ and cannabinoid systems in neuropathic mice, Pharmacol. Biochem. Behav. 99(4) (2011) 540–544; https://doi.org/10.1016/j.pbb.2011.05.02910.1016/j.pbb.2011.05.02921664922 Search in Google Scholar

12. J. M. Vigil, S. S. Stith, I. M. Adams and A. P. Reeve, Associations between medical cannabis and prescription opioid use in chronic pain patients: A preliminary cohort study, PLoS One 12 (2017) e0187795 (13 pages); https://doi.org/10.1371/journal.pone.018779510.1371/journal.pone.0187795569060929145417 Search in Google Scholar

13. G. N. Quiñonez-Bastidas, O. Palomino-Hernández, M. López-Ortíz, H. I. Rocha-González, G. M. González-Anduaga, I. Regla and A. Navarrete, Antiallodynic effect of PhAR-DBH-Me involves cannabinoid and TRPV1 receptors, Pharmacol. Res. Perspect. 8 (2020) e00663 (12 pages); https://doi.org/10.1002/prp2.66310.1002/prp2.663 Search in Google Scholar

14. M. Lopez-Ortiz, A. Herrera-Solis, A. Luviano-Jardon, N. Reyes-Prieto, I. Castillo, I. Monsalvo, P. Demare, M. Méndez-Díaz, I. Regla and O. Prospéro-García, Chemoenzymatic synthesis and cannabinoid activity of a new diazabicyclic amide of phenylacetylricinoleic acid, Bioorg. Med. Chem. Lett. 20(11) (2010) 3231–3234; https://doi.org/10.1016/j.bmcl.2010.04.07410.1016/j.bmcl.2010.04.074 Search in Google Scholar

15. S. H. Kim and J. M. Chung, An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat, Pain 50 (1992) 355–363; https://doi.org/10.1016/0304-3959(92)90041-910.1016/0304-3959(92)90041-9 Search in Google Scholar

16. N. Authier, J. P. Gillet, J. Fialip, A. Eschalier and F. Coudore, An animal model of nociceptive peripheral neuropathy following repeated cisplatin injections, Exp. Neurol. 182(1) (2003) 12–20; https://doi.org/10.1016/s0014-4886(03)00003-710.1016/S0014-4886(03)00003-7 Search in Google Scholar

17. S. R. Chaplan, F. W. Bach, J. W. Pogrel, J. M. Chung and T. L. Yaksh, Quantitative assessment of tactile allodynia in the rat paw, J. Neurosci. Meth. 53(1) (1994) 55–63; https://doi.org/10.1016/0165-0270(94)90144-910.1016/0165-0270(94)90144-9 Search in Google Scholar

18. R. J. Tallarida, Drug Synergism and Dose-Effect Data Analysis, in Drug Synergism and Dose-Effect Data Analysis, 1st ed., Chapman and Hall/CRC, New York 2000.10.1201/9781420036107 Search in Google Scholar

19. J. Balderas-López, A. Navarrete and A. Alfaro, Graded Dose-Response Curves, in Pharmacometrics, 1st ed., Universidad Nacional Autonóma de México, Mexico City 2017. Search in Google Scholar

20. S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher and P. Maire, The Hill equation: a review of its capabilities in pharmacological modelling, Fundam. Clin. Pharmacol. 22(6) (2008) 633–648; https://doi.org/10.1111/j.1472-8206.2008.00633.x10.1111/j.1472-8206.2008.00633.x19049668 Search in Google Scholar

21. S. de J. Acosta-Cota, E. M. Aguilar-Medina, R. Ramos-Payána, J. G. Rendón Maldonado, J. G. Romero-Quintana, J. Montes-Avila, J. I. Sarmiento-Sánchez, C. G. Plazas-Guerrero, M. J.Vergara-Jiménez, A. Sánchez-López, D. Centurión and U. Osuna-Martínez, Therapeutic effect of treatment with metformin and/or 4-hydroxychalcone in male Wistar rats with nonalcoholic fatty liver disease, Eur. J. Pharmacol. 863 (2019) Article ID 172699 (14 pages); https://doi.org/10.1016/j.ejphar.2019.17269910.1016/j.ejphar.2019.17269931563650 Search in Google Scholar

22. R. A. Gibson, J.-A Lim, S. J. Choi, L. Flores, L. Clinton, D. Bali, S. Young, A. Asokan, B. Sun and P. S. Kishnani, Characterization of liver GSD IX g2 pathophysiology in a novel Phkg2−/− mouse model, Mol. Genet. Metab. 133(3) (2021) 269–276; https://doi.org/10.1016/j.ymgme.2021.05.00810.1016/j.ymgme.2021.05.00834083142 Search in Google Scholar

23. N. P. Kazantzis, S. L. Casey, P. W. Seow, V. A. Mitchell and C. W. Vaughan, Opioid and cannabinoid synergy in a mouse neuropathic pain model, Br. J. Pharmacol. 173(16) (2016) 2521–2531; https://doi.org/10.1111/bph.1353410.1111/bph.13534495995627278681 Search in Google Scholar

24. M. Déciga-Campos, P. M. Ramírez-Marín and F. J. López-Muñoz, Synergistic antinociceptive interaction between palmitoylethanolamide and tramadol in the mouse formalin test, Eur. J. Pharmacol. 765 (2015) 68–74; https://doi.org/10.1016/j.ejphar.2015.08.02510.1016/j.ejphar.2015.08.02526297302 Search in Google Scholar

25. L. Roulet, V. Rollason, J. Desmeules and V. Piguet, Tapentadol versus tramadol: A narrative and comparative review of their pharmacological, efficacy and safety profiles in adult patients, Drugs 81 (2021) 1257–1272; https://doi.org/10.1007/s40265-021-01515-z10.1007/s40265-021-01515-z831892934196947 Search in Google Scholar

26. N. T. Snider, M. J. Sikora, C. Sridar, T. J. Feuerstein, J. M. Rae and P. F. Hollenberg, The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6, J. Pharmacol. Exp. Ther. 327(2) (2008) 538–545; https://doi.org/10.1124/jpet.108.14179610.1124/jpet.108.141796270457918698000 Search in Google Scholar

27. N. T. Snider, J. A. Nast, L. A. Tesmer and P. F. Hollenberg, A cytochrome P450-derived epoxygenated metabolite of anandamide is a potent cannabinoid receptor 2-selective agonist, Mol. Pharmacol. 75(4) (2009) 965–972; https://doi.org/10.1124/mol.108.05343910.1124/mol.108.053439268493519171674 Search in Google Scholar

28. M. Pratt-Hyatt, H. Zhang, N. T. Snider and P. F. Hollenberg, Effects of a commonly occurring genetic polymorphism of human CYP3A4 (I118V) on the metabolism of anandamide, Drug Metab. Dispos. 38(11) (2010) 2075–2082; https://doi.org/10.1124/dmd.110.03371210.1124/dmd.110.033712296739520702771 Search in Google Scholar

29. M. Vázquez, N. Guevara, C. Maldonado, P. C. Guido and P. Schaiquevich, Potential pharmaco-kinetic drug-drug interactions between cannabinoids and drugs used for chronic pain, Biomed. Res. Int. 2020 (2020) Article ID 3902740 (9 pages); https://doi.org/10.1155/2020/390274010.1155/2020/3902740744322032855964 Search in Google Scholar

30. J. Guindon, Y. Lai, S. M. Takacs, H. B. Bradshaw and A. G. Hohmann, Alterations in endocannabinoid tone following chemotherapy-induced peripheral neuropathy: effects of endocannabinoid deactivation inhibitors targeting fatty-acid amide hydrolase and monoacylglycerol lipase in comparison to reference analgesics following cisplatin treatment, Pharmacol. Res. 67(1) (2013) 94–109; https://doi.org/10.1016/j.phrs.2012.10.01310.1016/j.phrs.2012.10.013352579023127915 Search in Google Scholar

31. H. L. Blanton, J. Brelsfoard, N. DeTurk, K. Pruitt, M. Narasimhan, D. J. Morgan and J. Guindon, Cannabinoids: Current and future options to treat chronic and chemotherapy-induced neuropathic pain, Drugs 79 (2019) 969–995; https://doi.org/10.1007/s40265-019-01132-x10.1007/s40265-019-01132-x831046431127530 Search in Google Scholar

32. D. da Fonseca Pacheco, A. Klein, A. P. de Castro, C. M. da Fonseca Pacheco, J. N. de Francischi and I. D. G. Duarte, The mu-opioid receptor agonist morphine, but not agonists at delta- or kappa--opioid receptors, induces peripheral antinociception mediated by cannabinoid receptors, Br. J. Pharmacol. 154(5) (2008) 1143–1149; https://doi.org/10.1038/bjp.2008.17510.1038/bjp.2008.175246557418469844 Search in Google Scholar

33. B. Wiese and A. R. Wilson-Poe, Emerging evidence for cannabis’ role in opioid use disorder, Cannabis Cannabinoid Res. 3(1) (2018) 179–189; https://doi.org/10.1089/can.2018.002210.1089/can.2018.0022613556230221197 Search in Google Scholar

34. N. Petejova and A. Martinek, Acute kidney injury following acute pancreatitis: A review, Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech Repub. 157(2) (2013) 105–113; https://doi.org/10.5507/bp.2013.04810.5507/bp.2013.048 Search in Google Scholar

35. J. Zaias, M. Mineau, C. Cray, D. Yoon and N. H. Altman, Reference values for serum proteins of common laboratory rodent strains, J. Am. Assoc. Lab. Anim. Sci. 48(4) (2009) 387–390. Search in Google Scholar

36. J. S. Hochman and N. Q. Brill, Chronic marihuana usage and liver function, Lancet 298(7728) (1971) 818–819; https://doi.org/10.1016/s0140-6736(71)92771-110.1016/S0140-6736(71)92771-1 Search in Google Scholar

37. L. E. Ewing, C. M. Skinner, C. M. Quick, S. Kennon-McGill, M. R. McGill, L. A. Walker, M. A. ElSohly, B. J. Gurley and I. Koturbash, Hepatotoxicity of a cannabidiol-rich cannabis extract in the mouse model, Molecules 24(9) (2019) Article ID 1694 (17 pages); https://doi.org/10.3390/molecules2409169410.3390/molecules24091694653999031052254 Search in Google Scholar

38. Y.-C. Hsu, C.-C. Lei, Y.-H. Shih, C. Ho and C.-L. Lin, Induction of proteinuria by cannabinoid receptors 1 signaling activation in CB1 transgenic mice, Am. J. Med. Sci. 349(2) (2015) 162–168; https://doi.org/10.1097/MAJ.000000000000035210.1097/MAJ.000000000000035225474224 Search in Google Scholar

39. E. C. Morais Rateke, C. Matiollo, E. Q. de Andrade Moura, M. Andrigueti, C. Maccali, J. S. Fonseca, S. M. F. Canova, J. L. Narciso-Schiavon and L. L. Schiavon, Low sodium to potassium ratio in spot urine sample is associated with progression to acute kidney injury and mortality in hospitalized patients with cirrhosis, Dig. Liver Dis. 53(9) (2021) 1159–1166; https://doi.org/10.1016/j.dld.2020.12.11710.1016/j.dld.2020.12.11733446446 Search in Google Scholar

40. M. Boada, A. Pippo, M. Rodriguez-Milhomens, V. González, R. Higgie, V. Mérola, J. M. Carissi and R. Silvariño, Hiperpotasemia severa en emergencia: Manifestaciones clínicas y manejo terapéutico a propósito de tres casos [Severe hyperkalemia in emergency: Clinical manifestations and therapeutic management of three cases], Arch. Med. Int. 34 (2012) 91–94. Search in Google Scholar

41. Y. Koura, A. Ichihara, Y. Tada, Y. Kaneshiro, H. Okada, C. J. Temm, M. Hayashi and T. Saruta, Anandamide decreases glomerular filtration rate through predominant vasodilation of efferent arterioles in rat kidneys, J. Am. Soc. Nephrol. 15(6) (2004) 1488–1494; https://doi.org/10.1097/01.asn.0000130561.82631.bc10.1097/01.ASN.0000130561.82631.BC Search in Google Scholar

42. J. S. Kim, J. Y. Son, K. S. Kim, H. J. Lim, M.-Y. Ahn, S. J. Kwack, Y.-M. Kim, K. Y. Lee, J. Lee, B. M. Lee and H. S. Kim, Hepatic damage exacerbates cisplatin-induced acute kidney injury in Sprague--Dawley rats, J. Toxicol. Environ. Health A 81(11) (2018) 397–407; https://doi.org/10.1080/15287394.2018.145117910.1080/15287394.2018.145117929557720 Search in Google Scholar

43. C. J. Lucas, P. Galettis and J. Schneider, The pharmacokinetics and the pharmacodynamics of cannabinoids, Br. J. Clin. Pharmacol. 84(11) (2018) 2477–2482; https://doi.org/10.1111/bcp.1371010.1111/bcp.13710617769830001569 Search in Google Scholar

44. P. Pacher and R. Mechoulam, Is lipid signaling through cannabinoid 2 receptors part of a protective system?, Prog. Lipid. Res. 50 (2011) 193–211; https://doi.org/10.1016/j.plipres.2011.01.00110.1016/j.plipres.2011.01.001306263821295074 Search in Google Scholar

45. M. Rajesh, H. Pan, P. Mukhopadhyay, S. Bátkai, D. Osei-Hyiaman, G. Haskó, L. Liaudet, B. Gao and P. Pacher, Cannabinoid-2 receptor agonist HU-308 protects against hepatic ischemia/reperfusion injury by attenuating oxidative stress, inflammatory response, and apoptosis, J. Leukoc. Biol. 82(6) (2007) 1382–1389; https://doi.org/10.1189/jlb.030718010.1189/jlb.0307180222547617652447 Search in Google Scholar

46. J. S. Richter, V. Quenardelle, O. Rouyer, J. S. Raul, R. Beaujeux, B. Gény and V. Wolff, A systematic review of the complex effects of cannabinoids on cerebral and peripheral circulation in animal models, Front. Physiol. 9 (2018) Article ID 622 (13 pages); https://doi.org/10.3389/fphys.2018.0062210.3389/fphys.2018.00622598689629896112 Search in Google Scholar

47. P. Pacher, S. Steffens, G. Haskó, T. H. Schindler and G. Kunos, Cardiovascular effects of marijuana and synthetic cannabinoids: the good, the bad, and the ugly, Nat. Rev. Cardiol. 15 (2018) 151–166; https://doi.org/10.1038/nrcardio.2017.13010.1038/nrcardio.2017.13028905873 Search in Google Scholar

48. J. A. Wagner, K. Varga, E. F. Ellis, B. A. Rzigalinski, B. R. Martin and G. Kunos, Activation of peripheral CB1 cannabinoid receptors in haemorrhagic shock, Nature 390(6659) (1997) 518–521; https://doi.org/10.1038/3737110.1038/373719394002 Search in Google Scholar

Artículos recomendados de Trend MD

Planifique su conferencia remota con Sciendo