Accès libre

Alginate–gelatin hydrogel supplemented with platelet concentrates can be used as bioinks for scaffold printing

À propos de cet article

Citez

Zhang YS, Yue K, Aleman J, Moghaddam KM, Bakht SM, Yang J, et al. 3D bioprinting for tissue and organ fabrication. Ann Biomed Eng. 2017; 45:148–63. ZhangYS YueK AlemanJ MoghaddamKM BakhtSM YangJ 3D bioprinting for tissue and organ fabrication Ann Biomed Eng. 2017 45 148 63 Search in Google Scholar

Fatimi A, Okoro OV, Podstawczyk D, Siminska-Stanny J, Shavandi A. Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review. Gels. 2022; 8:179. doi: 10.3390/gels8030179 FatimiA OkoroOV PodstawczykD Siminska-StannyJ ShavandiA Natural hydrogel-based bio-inks for 3D bioprinting in tissue engineering: a review Gels. 2022 8 179 10.3390/gels8030179 Open DOISearch in Google Scholar

Gopinathan J, Noh I. Recent trends in bioinks for 3D printing. Biomater Res. 2018; 22:11. doi: 10.1186/s40824-018-0122-1 GopinathanJ NohI Recent trends in bioinks for 3D printing Biomater Res. 2018 22 11 10.1186/s40824-018-0122-1 Open DOISearch in Google Scholar

Mendes BB, Gómez-Florit M, Hamilton AG, Detamore MS, Domingues RMA, Reis RL, Gomes ME. Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures. Biofabrication. 2019; 12:015012. doi: 10.1088/1758-5090/ab33e8 MendesBB Gómez-FloritM HamiltonAG DetamoreMS DominguesRMA ReisRL GomesME Human platelet lysate-based nanocomposite bioink for bioprinting hierarchical fibrillar structures Biofabrication. 2019 12 015012 10.1088/1758-5090/ab33e8 Open DOISearch in Google Scholar

Somasekharan LT, Kasoju N, Raju R, Bhatt A. Formulation and characterization of alginate dialdehyde, gelatin, and platelet-rich plasma-based bioink for bioprinting applications. Bioengineering (Basel). 2020; 7:108. doi: 10.3390/bioengineering7030108 SomasekharanLT KasojuN RajuR BhattA Formulation and characterization of alginate dialdehyde, gelatin, and platelet-rich plasma-based bioink for bioprinting applications Bioengineering (Basel). 2020 7 108 10.3390/bioengineering7030108 Open DOISearch in Google Scholar

Lee KY, Mooney DJ. Alginate: properties and biomedical applications. Prog Polym Sci. 2012; 37:106–26. LeeKY MooneyDJ Alginate: properties and biomedical applications Prog Polym Sci. 2012 37 106 26 Search in Google Scholar

Łabowska MB, Cierluk K, Jankowska AM, Kulbacka J, Detyna J, Michalak I. A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting. Materials (Basel). 2021; 14:858. doi: 10.3390/ma14040858 ŁabowskaMB CierlukK JankowskaAM KulbackaJ DetynaJ MichalakI A review on the adaption of alginate-gelatin hydrogels for 3D cultures and bioprinting Materials (Basel). 2021 14 858 10.3390/ma14040858 Open DOISearch in Google Scholar

Yoon SJ, Yoo Y, Nam SE, Hyun H, Lee DW, Um S, et al. The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model. Mar Drugs. 2018; 16:351. doi: 10.3390/md16100351 YoonSJ YooY NamSE HyunH LeeDW UmS The cocktail effect of BMP-2 and TGF-β1 loaded in visible light-cured glycol chitosan hydrogels for the enhancement of bone formation in a rat tibial defect model Mar Drugs. 2018 16 351 10.3390/md16100351 Open DOISearch in Google Scholar

Caruana A, Savina D, Macedo JP, Soares SC. From platelet-rich plasma to advanced platelet-rich fibrin: biological achievements and clinical advances in modern surgery. Eur J Dent. 2019; 13:280–6. CaruanaA SavinaD MacedoJP SoaresSC From platelet-rich plasma to advanced platelet-rich fibrin: biological achievements and clinical advances in modern surgery Eur J Dent. 2019 13 280 6 Search in Google Scholar

Ding ZY, Tan Y, Peng Q, Zuo J, Li N. Novel applications of platelet concentrates in tissue regeneration (Review). Exp Ther Med. 2021; 21:226. doi: 10.3892/etm.2021.9657 DingZY TanY PengQ ZuoJ LiN Novel applications of platelet concentrates in tissue regeneration (Review) Exp Ther Med. 2021 21 226 10.3892/etm.2021.9657 Open DOISearch in Google Scholar

Irmak G, Gümüşderelioğlu M. Photo-activated platelet-rich plasma (PRP)-based patient-specific bioink for cartilage tissue engineering. Biomed Mater. 2020; 15:065010. doi: 10.1088/1748-605X/ab9e46 IrmakG GümüşderelioğluM Photo-activated platelet-rich plasma (PRP)-based patient-specific bioink for cartilage tissue engineering Biomed Mater. 2020 15 065010 10.1088/1748-605X/ab9e46 Open DOISearch in Google Scholar

Li Z, Zhang X, Yuan T, Zhang Y, Luo C, Zhang J, et al. Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration. Tissue Eng Part A. 2020; 26:886–95. LiZ ZhangX YuanT ZhangY LuoC ZhangJ Addition of platelet-rich plasma to silk fibroin hydrogel bioprinting for cartilage regeneration Tissue Eng Part A. 2020 26 886 95 Search in Google Scholar

Yi K, Li Q, Lian X, Wang Y, Tang Z. Utilizing 3D bioprinted platelet-rich fibrin-based materials to promote the regeneration of oral soft tissue. Regen Biomater. 2022; 9:rbac021. doi: 10.1093/rb/rbac021 YiK LiQ LianX WangY TangZ Utilizing 3D bioprinted platelet-rich fibrin-based materials to promote the regeneration of oral soft tissue Regen Biomater. 2022 9 rbac021 10.1093/rb/rbac021 Open DOISearch in Google Scholar

Hoang ML, TVL Tuyet, TLB Ha. Platelet-rich plasma extract promoting migration of mouse bone marrow cells. Res J Biotech. 2022; 17:42–7. HoangML TuyetTVL HaTLB Platelet-rich plasma extract promoting migration of mouse bone marrow cells Res J Biotech. 2022 17 42 7 Search in Google Scholar

Standardization, I.J.I.G., Switzerland, biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity. 2009. Standardization I.J.I.G. Switzerland, biological evaluation of medical devices—part 5: tests for in vitro cytotoxicity 2009 Search in Google Scholar

Paredes Juárez GA, Spasojevic M, Faas MM, de Vos P. Immunological and technical considerations in application of alginate-based microencapsulation systems. Front Bioeng Biotechnol. 2014; 2:26. Paredes JuárezGA SpasojevicM FaasMM de VosP Immunological and technical considerations in application of alginate-based microencapsulation systems Front Bioeng Biotechnol. 2014 2 26 Search in Google Scholar

GhavamiNejad A, Ashammakhi N, Wu XY, Khademhosseini A. crosslinking strategies for 3d bioprinting of polymeric hydrogels. Small. 2020; 16:e2002931. doi: 10.1002/smll.202002931 GhavamiNejadA AshammakhiN WuXY KhademhosseiniA crosslinking strategies for 3d bioprinting of polymeric hydrogels Small. 2020 16 e2002931 10.1002/smll.202002931 Open DOISearch in Google Scholar

Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks. J Mater Chem B. 2020; 8:8171–88. PirasCC SmithDK Multicomponent polysaccharide alginate-based bioinks J Mater Chem B. 2020 8 8171 88 Search in Google Scholar

Gonzalez-Fernandez T, Tenorio AJ, Campbell KT, Silva EA, Leach JK. Evaluation of alginate-based bioinks for 3D bioprinting, mesenchymal stromal cell osteogenesis, and application for patient-specific bone grafts. bioRxiv. 2020: 2020.08.09.242131. doi: 10.1101/2020.08.09.242131 Gonzalez-FernandezT TenorioAJ CampbellKT SilvaEA LeachJK Evaluation of alginate-based bioinks for 3D bioprinting, mesenchymal stromal cell osteogenesis, and application for patient-specific bone grafts bioRxiv 2020 2020.08.09.242131. 10.1101/2020.08.09.242131 Open DOISearch in Google Scholar

Chen FM, Zhang M, Wu ZF. Toward delivery of multiple growth factors in tissue engineering. Biomaterials. 2010; 31:6279–308. ChenFM ZhangM WuZF Toward delivery of multiple growth factors in tissue engineering Biomaterials. 2010 31 6279 308 Search in Google Scholar

Yu J, Ustach C, Kim HR. Platelet-derived growth factor signaling and human cancer. J Biochem Mol Biol. 2003; 36:49–59. YuJ UstachC KimHR Platelet-derived growth factor signaling and human cancer J Biochem Mol Biol. 2003 36 49 59 Search in Google Scholar

Holmes DI, Zachary I. The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease. Genome Biol. 2005; 6:209. doi: 10.1186/gb-2005-6-2-209 HolmesDI ZacharyI The vascular endothelial growth factor (VEGF) family: angiogenic factors in health and disease Genome Biol. 2005 6 209 10.1186/gb-2005-6-2-209 Open DOISearch in Google Scholar

Ji W, Sun Y, Yang F, van den Beucken JJ, Fan M, Chen Z, Jansen JA. Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications. Pharm Res. 2011; 28:1259–72. JiW SunY YangF van den BeuckenJJ FanM ChenZ JansenJA Bioactive electrospun scaffolds delivering growth factors and genes for tissue engineering applications Pharm Res. 2011 28 1259 72 Search in Google Scholar

Mao H, Kim SM, Ueki M, Ito Y. Serum-free culturing of human mesenchymal stem cells with immobilized growth factors. J Mater Chem B. 2017; 5:928–34. MaoH KimSM UekiM ItoY Serum-free culturing of human mesenchymal stem cells with immobilized growth factors J Mater Chem B. 2017 5 928 34 Search in Google Scholar

Moncion A, Lin M, O’Neill EG, Franceschi RT, Kripfgans OD, Putnam AJ, Fabiilli ML. Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds. Biomaterials. 2017; 140:26–36. MoncionA LinM O’NeillEG FranceschiRT KripfgansOD PutnamAJ FabiilliML Controlled release of basic fibroblast growth factor for angiogenesis using acoustically-responsive scaffolds Biomaterials. 2017 140 26 36 Search in Google Scholar

Pan T, Song W, Cao X, Wang Y. 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties. J Material Sci Tech. 2016; 32:889–900. PanT SongW CaoX WangY 3D bioplotting of gelatin/alginate scaffolds for tissue engineering: influence of crosslinking degree and pore architecture on physicochemical properties J Material Sci Tech. 2016 32 889 900 Search in Google Scholar

Giuseppe MD, Law N, Webb B, A Macrae R, Liew LJ, Sercombe TB, Dilley RJ, et al. Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting. J Mech Behav Biomed Mater. 2018; 79: 150–7. GiuseppeMD LawN WebbB A MacraeR LiewLJ SercombeTB DilleyRJ Mechanical behaviour of alginate-gelatin hydrogels for 3D bioprinting J Mech Behav Biomed Mater. 2018 79 150 7 Search in Google Scholar

Zhao Y, Li Y, Mao S, Sun W, Yao R. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology. Biofabrication. 2015; 7:045002. doi: 10.1088/1758-5090/7/4/045002 ZhaoY LiY MaoS SunW YaoR The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology Biofabrication. 2015 7 045002 10.1088/1758-5090/7/4/045002 Open DOISearch in Google Scholar

Vander Heiden MG, Plas DR, Rathmell JC, Fox CJ, Harris MH, Thompson CB. Growth factors can influence cell growth and survival through effects on glucose metabolism. Mol Cell Biol. 2001; 21:5899–912. Vander HeidenMG PlasDR RathmellJC FoxCJ HarrisMH ThompsonCB Growth factors can influence cell growth and survival through effects on glucose metabolism Mol Cell Biol. 2001 21 5899 912 Search in Google Scholar

Enriquez-Ochoa D, Robles-Ovalle P, Mayolo-Deloisa K, Brunck MEG. Immobilization of growth factors for cell therapy manufacturing. Front Bioeng Biotechnol. 2020; 8:620. doi: 10.3389/fbioe.2020.00620. Erratum in: Front Bioeng Biotechnol. 2020; 8:821. Enriquez-OchoaD Robles-OvalleP Mayolo-DeloisaK BrunckMEG Immobilization of growth factors for cell therapy manufacturing Front Bioeng Biotechnol. 2020 8 620 10.3389/fbioe.2020.00620 Erratum in: Front Bioeng Biotechnol. 2020; 8:821. Open DOISearch in Google Scholar

Franz KC, Suschek CV, Grotheer V, Akbas M, Pallua N. Impact of growth factor content on proliferation of mesenchymal stromal cells derived from adipose tissue. PLoS One. 2020; 15:e0230265. doi: 10.1371/journal.pone.0230265 FranzKC SuschekCV GrotheerV AkbasM PalluaN Impact of growth factor content on proliferation of mesenchymal stromal cells derived from adipose tissue PLoS One. 2020 15 e0230265 10.1371/journal.pone.0230265 Open DOISearch in Google Scholar

eISSN:
1875-855X
Langue:
Anglais
Périodicité:
6 fois par an
Sujets de la revue:
Medicine, Assistive Professions, Nursing, Basic Medical Science, other, Clinical Medicine