Nécessite une authentification

An update on the GLOB blood group system and collection

À propos de cet article

Citez

Sanger R. An association between the P and Jay systems of blood groups. Nature 1955;176:1163–4.10.1038/1761163a0Search in Google Scholar

Matson GA, Swanson J, Noades J, Sanger R, Race RR. A new antigen and antibody belonging to the P blood group system. Amer J Hum Genet 1959;11:26–34.Search in Google Scholar

Naiki M, Marcus DM. Human erythrocyte P and Pk blood group antigens: identification as glycosphingolipids. Biochem Biophys Res Commun 1974;60:1105–11.10.1016/0006-291X(74)90426-4Search in Google Scholar

Hellberg Å, Poole J, Olsson ML. Molecular basis of the globoside-deficient P(k) blood group phenotype. Identification of four inactivating mutations in the UDP-N-acetylgalactosamine: globotriaosylceramide 3-beta-N-acetylgalactosaminyltransferase gene. J Biol Chem 2002;277: 29455–9.10.1074/jbc.M20304720012023287Search in Google Scholar

Olsson ML, Peyrard T, Hult AK, et al. PX2: a new blood group antigen with implications for transfusion recommendations in P1k and P2k individuals (abstract). Vox Sang 2011;101 (Suppl 1):53.Search in Google Scholar

Amado M, Almeida R, Carneiro F, et al. A family of human beta3-galactosyltransferases. Characterization of four members of a UDP-galactose:beta-N-acetyl-glucosamine/beta-N-acetyl-galactosamine beta-1,3-galactosyltransferase family. J Biol Chem 1998;273:12770–8.10.1074/jbc.273.21.127709582303Search in Google Scholar

Okajima T, Nakamura Y, Uchikawa M, et al. Expression cloning of human globoside synthase cDNAs. Identification of beta3Gal-T3 as UDP-N-acetylgalactosamine:globotriaosylceramide beta1,3-N-acetylgalactosaminyltransferase. J Biol Chem 2000;275:40498–503.10.1074/jbc.M00690220010993897Search in Google Scholar

Hellberg Å, Ringressi A, Yahalom V, Säfwenberg J, Reid ME, Olsson ML. Genetic heterogeneity at the glycosyltransferase loci underlying the GLOB blood group system and collection. Br J Haematol 2004;125:528–36.10.1111/j.1365-2141.2004.04930.x15142124Search in Google Scholar

Westman JS, Hellberg Å, Peyrard T, Hustinx H, Thuresson B, Olsson ML. Molecular dissection of rare phenotypes in the P1PK and GLOB histo-blood group systems with novel genetic markers (abstract). Transfusion 2011;51(Suppl 3):24A.Search in Google Scholar

Kundu SK, Steane SM, Bloom JE, Marcus DM. Abnormal glycolipid composition of erythrocytes with a weak P antigen. Vox Sang 1978;35:160–7.10.1111/j.1423-0410.1978.tb02916.x676244Search in Google Scholar

Kundu SK, Evans A, Rizvi J, Glidden H, Marcus DM. A new Pk phenotype in the P blood group system. J Immunogenet 1980;7:431–9.10.1111/j.1744-313X.1980.tb00738.xSearch in Google Scholar

Nakajima H, Yokota T. Two Japanese families with Pk members. Vox Sang 1977;32:56–8.10.1111/j.1423-0410.1977.tb00604.x841964Search in Google Scholar

Race RR, Sanger R. Blood groups in man. Oxford, UK: Blackwell Scientific Publications, 1975.Search in Google Scholar

Kortekangas AE, Kaarsalo E, Melartin L, et al. The red cell antigen Pk and its relationship to the P system: the evidence of three more Pk families. Vox Sang 1965;10:385–404.10.1159/000465021Search in Google Scholar

Fletcher KS, Bremer EG, Schwarting GA. P blood group regulation of glycosphingolipid levels in human erythrocytes. J Biol Chem 1979;254:11196–8.10.1016/S0021-9258(19)86468-2Search in Google Scholar

Cantin G, Lyonnais J. Anti-PP1Pk and early abortion. Transfusion 1983;23:350–1.10.1046/j.1537-2995.1983.23483276877.xSearch in Google Scholar

Lindström K, Von Dem Borne AE, Breimer ME, et al. Glycosphingolipid expression in spontaneously aborted fetuses and placenta from blood group p women. Evidence for placenta being the primary target for anti-Tja-antibodies. Glycoconj J 1992;9:325–9.10.1007/BF00731093Search in Google Scholar

Fernández-Jiménez MC, Jiménez-Marco MT, Hernández D, González A, Omeñaca F, de la Cámara C. Treatment with plasmapheresis and intravenous immunoglobulin in pregnancies complicated with anti-PP1Pk or anti-K immunization: a report of two patients. Vox Sang 2001;80: 117–20.10.1046/j.1423-0410.2001.00021.xSearch in Google Scholar

Yang Z, Bergström J, Karlsson KA. Glycoproteins with Gal alpha 4Gal are absent from human erythrocyte membranes, indicating that glycolipids are the sole carriers of blood group P activities. J Biol Chem 1994;269:14620–4.10.1016/S0021-9258(17)36669-3Search in Google Scholar

Keusch JJ, Manzella SM, Nyame KA, Cummings RD, Baenziger JU. Cloning of Gb3 synthase, the key enzyme in globo-series glycosphingolipid synthesis, predicts a family of alpha 1, 4-glycosyltransferases conserved in plants, insects, and mammals. J Biol Chem 2000;275:25315–21.10.1074/jbc.M002630200Search in Google Scholar

Fujii Y, Numata S, Nakamura Y, et al. Murine glycosyltransferases responsible for the expression of globoseries glycolipids: cDNA structures, mRNA expression, and distribution of their products. Glycobiology 2005;15:1257–67.10.1093/glycob/cwj015Search in Google Scholar

Zoja C, Corna D, Farina C, et al. Verotoxin glycolipid receptors determine the localization of microangiopathic process in rabbits given verotoxin-1. J Lab Clin Med 1992;120:229–38.Search in Google Scholar

Issitt PD, Anstee DJ. Applied blood group serology. 4th ed. Miami, FL: Montgomery Scientific Publications, 1998.Search in Google Scholar

Svennerholm E, Svennerholm L. The separation of neutral blood-serum glycolipids by thin-layer chromatography. Biochim Biophys Acta 1963;70:432–41.10.1016/0006-3002(63)90773-XSearch in Google Scholar

Zumbrun SD, Hanson L, Sinclair JF, et al. Human intestinal tissue and cultured colonic cells contain globotriaosylceramide synthase mRNA and the alternate Shiga toxin receptor globotetraosylceramide. Infect Immun 2010;78:4488–99.10.1128/IAI.00620-10297636420732996Search in Google Scholar

von dem Borne AE, Bos MJ, Joustra-Maas N, et al. A murine monoclonal IgM antibody specific for blood group P antigen (globoside). Br J Haematol 1986;63:35–46.10.1111/j.1365-2141.1986.tb07492.x2423110Search in Google Scholar

Shevinsky LH, Knowles BB, Damjanov I, Solter D. Monoclonal antibody to murine embryos defines a stage-specific embryonic antigen expressed on mouse embryos and human teratocarcinoma cells. Cell 1982;30:697–705.10.1016/0092-8674(82)90274-4Search in Google Scholar

Cooling LL, Koerner TA, Naides SJ. Multiple glycosphingolipids determine the tissue tropism of parvovirus B19. J Infect Dis 1995;172:1198–205.10.1093/infdis/172.5.1198Search in Google Scholar

Song Y, Withers DA, Hakomori S. Globoside-dependent adhesion of human embryonal carcinoma cells, based on carbohydrate-carbohydrate interaction, initiates signal transduction and induces enhanced activity of transcription factors AP1 and CREB. J Biol Chem 1998;273:2517–25.10.1074/jbc.273.5.2517Search in Google Scholar

Brown KE, Hibbs JR, Gallinella G, et al. Resistance to parvovirus B19 infection due to lack of virus receptor (erythrocyte P antigen). N Engl J Med 1994;330:1192–6.10.1056/NEJM199404283301704Search in Google Scholar

Young NS, Brown KE. Parvovirus B19. N Engl J Med 2004; 350:586–97.10.1056/NEJMra030840Search in Google Scholar

de Jong EP, Walther FJ, Kroes AC, Oepkes D. Parvovirus B19 infection in pregnancy: new insights and management. Prenat Diagn 2011;31:419–25.10.1002/pd.2714Search in Google Scholar

Heddle NM. Acute paroxysmal cold hemoglobinuria. Transfus Med Rev 1989;3:219–29.10.1016/S0887-7963(89)70082-1Search in Google Scholar

Moulds JM, Moulds JJ. Blood group associations with parasites, bacteria, and viruses. Transfus Med Rev 2000;14:302–11.10.1053/tmrv.2000.1622711055075Search in Google Scholar

Ziegler T, Jacobsohn N, Fünfstück R. Correlation between blood group phenotype and virulence properties of Escherichia coliin patients with chronic urinary tract infection. Int J Antimicrob Agents 2004;24(Suppl 1):S70–5.10.1016/j.ijantimicag.2004.03.00215364312Search in Google Scholar

Tippett P, Sanger R, Race RR, Swanson J, Busch S. An agglutinin associated with the P and the ABO blood group systems. Vox Sang 1965;10:269–80.10.1111/j.1423-0410.1965.tb01390.x14332927Search in Google Scholar

Gillard BK, Jones MA, Marcus DM. Glycosphingolipids of human umbilical vein endothelial cells and smooth muscle cells. Arch Biochem Biophys 1987;256:435–45.10.1016/0003-9861(87)90600-XSearch in Google Scholar

Stroud MR, Stapleton AE, Levery SB. The P histo-blood group-related glycosphingolipid sialosyl galactosyl globoside as a preferred binding receptor for uropathogenic Escherichia coli:isolation and structural characterization from human kidney. Biochemistry 1998;37:17420–8.10.1021/bi9814639Search in Google Scholar

Cooling LL, Zhang D, Koerner TA. Human platelets express gangliosides with LKE activity and ABH blood group activity. Transfusion 2001;41:504–16.10.1046/j.1537-2995.2001.41040504.xSearch in Google Scholar

Cooling LL, Kelly K. Inverse expression of P(k) and Luke blood group antigens on human RBCs. Transfusion 2001;41: 898–907.10.1046/j.1537-2995.2001.41070898.xSearch in Google Scholar

Kannagi R, Fukuda MN, Hakomori S. A new glycolipid antigen isolated from human erythrocyte membranes reacting with antibodies directed to globo-N-tetraosylceramide (globoside). J Biol Chem 1982;257:4438–42.10.1016/S0021-9258(18)34741-0Search in Google Scholar

Thorn JJ, Levery SB, Salyan ME, et al. Structural characterization of x2 glycosphingolipid, its extended form, and its sialosyl derivatives: accumulation associated with the rare blood group p phenotype. Biochemistry 1992;31:6509–17.10.1021/bi00143a0221378756Search in Google Scholar

Storry JR, Castilho L, Daniels G, et al. International Society of Blood Transfusion Working Party on red cell immunogenetics and blood group terminology: Berlin report. Vox Sang 2011;101:77–82.10.1111/j.1423-0410.2010.01462.x549784821401621Search in Google Scholar

eISSN:
1930-3955
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Medicine, Clinical Medicine, Laboratory Medicine