Accès libre

Application of Potassium Ferrate(VI) in the Treatment of Selected Water and Wastewater Pollutants – Short Review

À propos de cet article

Citez

Figure 1.

Structural formula of K2FeO4 [2]
Structural formula of K2FeO4 [2]

Figure 2.

The effect of different Fe(VI)/FQ’s ratios on the antibiotics degradation (pH 7, T= 25°C, concentration of FQ’s= 30 μM)
The effect of different Fe(VI)/FQ’s ratios on the antibiotics degradation (pH 7, T= 25°C, concentration of FQ’s= 30 μM)

EDCs compounds susceptible to K2FeO4 degradation

Compound Molecular formula Molar mass, g/mol Literature
4-Metylphenol C32H60N4 107.08 Lee et al., 2005 [18], Wang and Feng, 2013 [19]
Estradiol C18H24O2 272.39 Lee et al., 2005 [18], Li and Dong, 2016 [20]
Bisphenol A C15H1602 228.29 Lee et al., 2005 [18], Li et al., 2008 [21]
Phenol C6H60 94.11 Lee et al., 2005 [18], Peings et al., 2015 [22]
Nonylphenol C15H24O 220.36 Anquandah and Sharma, 2009 [23]
Octylphenol C14H22O 206.33 Anquandah and Sharma, 2009 [23]
α-Ethynylestradiol C20H24O2 296.40 Li et al., 2008 [21], Lee et al., 2009 [24]
Dimethylamino-benzaldehyde (DMAB) C8H11N 121.18 Lee and von Gunten, 2010 [25]
Tetrabromo–bisphenol A C15H12Br402 543.88 Yang et al., 2014 [26]

Percentage removal of EDCs in membrane processes [11]

EDCs Effectiveness, %
Bisfenol A (BPA) 18-99
Testosterone 30-60
17-α-ethynylestradiol (EE2) 34-60
15-β-estradiol (E2) 8-90
Estrone (El) 10-95

Percentage removal of EDCs in K2FeO4 oxidation [17]

EDCs Removed compound, % removal of EDCs
Reaction time, min. 1 5 30 180
Bisfenol A (BPA) 99.8 99.8 99.8 99.8
Testosterone 53.0 78.9 81.4 85.7
17-α-thynylestradiol (EE2) 99.0 99.0 99.0 99.0
15-β-estradiol (E2) 98.0 98.0 98.0 98.0
Estrone (El) 99.3 99.3 99.3 99.3

Percentage removal of FLU in the oxidation process using K2FeO4

Fe(VI):FLU ratio Percentage removal after 10 min. reaction
Without Fe(VI) 0%
5:1 12%
10:1 29%
20:1 50%
50:1 95%
100:1 100%

Redox potentials of selected oxidants [3, modified]

Element/Compound Chemical reaction E°,V
Chlorine Cl2(g) + 2e- ⇄ 2C1- ⇄ClO- ⇄+ H20 + 2e- ⇄ Cl- ⇄+ 20H- 1.358 0.841
Chlorate(I) HCIO + H+ + 2e- ⇄ Cl- ⇄+ H20 1.482
Chlorine(IV) oxide C102(aq) + 2e- ⇄ C102 - 0.954
Chlorate(Vn) CIO4 - + 8H+ + 8e- ⇄ Cl- ⇄+ 4H20 1.389
Fluorine F2(g) + 2e- ⇄ 2F 2.87
Hydroxyl radical OH+H202 ⇄ H20 + H02 2.76
Ozone O3 + 2H+ + 2e- ⇄ 02 + 2H20 2.076
Hydrogen peroxide H202 +2H+ + 2e- ⇄ 2H20 1.776
Oxygen 02(g) + 4H+ + 4e- ⇄ 2H20 1.229
Permanganate Mn04 - ⇄+ 4H+ + 3e- ⇄ Mn02 + 2H20 Mn04 - ⇄ + 8H+ + 5e- ⇄ Mn2+ + 4H20 1.679 1.507
Dichromate Cr2072- + 14H+ + 6e- ⇄ 2Cr3+ + 7H20 1.33
Ferrate(VI) Fe042- + 8H+ + 3e- ⇄ Fe3+ + 4H20 Fe042- + 8H20 + 3e- ⇄ Fe(OH)3 +8H20 2.2 0.7

EDCs division depending on the origin [11]

EDCs obtained by synthesis Natural EDCs
Bisfenol A Progesterone
Bisfenol F Testosterone
17-α-ethynylestradiol (EE2) Androsterone
Genistein 15-β-estradiol (E2)
Biochanin A Estrone (El)

PCPs compounds susceptible to K2FeO4 degradation

Compound Molecular formula Molar mass, g/mol Literature
Ibuprofen C13H18O2 206.29 Lee and von Gunten, 2010 [25]
Atenolol C14H22N2O3 266.34 Lee and von Gunten, 2010 [25]
Menadione Sodium Bisulfite C11H9NaO5S 276.24 Yang et al., 2012 [17]
Carbamazepine C15H12N20 236.27 Yang et al., 2012 [17]
Benzophenone-3 C14H12O3 228.25 Diaz-Cruz and Barcelo, 2015 [35]
Triclosan (TCS) C12H7Cl3O2 289.54 Diaz-Cruz and Barcelo, 2015 [35]
Glycylglycine C4H8N2O3 132.12 Noorhasan et al., 2010 [34]
Sulfamethizole C9H10N4O2S2 270.33 Wu et al., 2018 [36]
Ciprofloxacin C17H18FN3O3 331.35 Zhou and Jiang, 2015a [37]
Penicillin G C16H18N2O4S 334.39 Zhou and Jiang, 2015a [37]
Cephalexin C16H17N3O4S 347.39 Karlesa et al., 2014 [38]
Sulfamethoxazole C24H29N7O6S 543.60 Noorhasan et al., 2010 [34]
Diatrizoic acid C11H9I3N2O4 613.90 AnquandahrfaZ.,2011 [39]
Propranolol C16H21NO2 259.35 Anquandah et al., 2013 [40]
Tetracycline C22H24N2O8 444.40 Sharmaet al., 2015[41]
eISSN:
1899-0142
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Architecture and Design, Architecture, Architects, Buildings