[
[1] S. Gupta, A. Ray, E. Keller. Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process. 2007 (21), No. 2, 866 – 884.
]Search in Google Scholar
[
[2] Y. Furuya. Small internal fatigue crack growth rate measured by beach marks. Mater. Sci. Eng. A 2016 (678), 260 – 266.
]Search in Google Scholar
[
[3] M. E. Biancolini, C. Brutti, G. Paparo, A. Zanini. Fatigue cracks nucleation on steel, acoustic emission and fractal analysis. Int. J. Fatigue 2006 (28), No. 12, 1820 – 1825.
]Search in Google Scholar
[
[4] M. Kurek, T. Lagoda, D. Katzy. Comparison of Fatigue Characteristics of some Selected Materials. Mater. Test. 2014 (56), No. 2, 92 – 95.
]Search in Google Scholar
[
[5] Ličková, D. et al. Identification of Fatigue Constants by Means of 3D Method. Journal of Mechanical Engineering – Strojnícky časopis 2016 (66), No. 2, 107–116.
]Search in Google Scholar
[
[6] J. Ge, Y. Sun, S. Zhou, L. Zhang, Y. Zhang, and Q. Zhang. A hybrid frequency–time domain method for predicting multiaxial fatigue life of 7075-T6 aluminium alloy under random loading. Fatigue Fract. Eng. Mater. Struct. 2014 (38), 247 – 256.
]Search in Google Scholar
[
[7] A. Nieslony, E. Macha. Spectral Method in Multiaxial Random Fatigue. Springer, 2007.
]Search in Google Scholar
[
[8] Karolczuk, E. Macha. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials. Int. J. Fract. 2005 (134), No. 3–4, 267 – 304.
]Search in Google Scholar
[
[9] K. Walat, M. Kurek, P. Ogonowski, T. Łagoda. The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range. Int. J. Fatigue 2012 (37), 100–111.
]Search in Google Scholar
[
[10] K. Kluger, T. Łagoda. Fatigue life of metallic material estimated according to selected models and load conditions. J. Theor. Appl. Mech. 2013 (51), No. 3, 581 – 592.
]Search in Google Scholar
[
[11] K. Kluger. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress. Int. J. Fatigue 2015 (80), 22 – 29.
]Search in Google Scholar
[
[12] R. Owsinski, et al. Evaluation of fatigue life of steel using steel grain size. Materialwiss. Werkstofftech. 2015 (46), No. 10, 1059 – 1067.
]Search in Google Scholar
[
[13] Niesłony, A. et al. Durability Tests Acceleration Performed on Machine Components Using Electromagnetic Shakers. In: Dynamical Systems: Theoretical and Experimental Analysis. Springer, Cham 2016, 293 – 305.
]Search in Google Scholar
[
[14] R. Owsiński, A. Niesłony. Analytical Model of Dynamic Behaviour of Fatigue Test Stand – Description and Experimental Validation. In: Dynamical Systems: Modelling 2015, 293 – 317.
]Search in Google Scholar