Uneingeschränkter Zugang

Identification of Fatigue Cracks on the Basis of Measurable Changes in System Dynamics


Zitieren

[1] S. Gupta, A. Ray, E. Keller. Symbolic time series analysis of ultrasonic data for early detection of fatigue damage. Mech. Syst. Signal Process.2007 (21), No. 2, 866 – 884.10.1016/j.ymssp.2005.08.022Open DOISearch in Google Scholar

[2] Y. Furuya. Small internal fatigue crack growth rate measured by beach marks. Mater. Sci. Eng. A2016 (678), 260 – 266.10.1016/j.msea.2016.09.109Search in Google Scholar

[3] M. E. Biancolini, C. Brutti, G. Paparo, A. Zanini. Fatigue cracks nucleation on steel, acoustic emission and fractal analysis. Int. J. Fatigue2006 (28), No. 12, 1820 – 1825.10.1016/j.ijfatigue.2005.12.003Open DOISearch in Google Scholar

[4] M. Kurek, T. Lagoda, D. Katzy. Comparison of Fatigue Characteristics of some Selected Materials. Mater. Test.2014 (56), No. 2, 92 – 95.Search in Google Scholar

[5] Ličková, D. et al. Identification of Fatigue Constants by Means of 3D Method. Journal of Mechanical Engineering – Strojnícky časopis2016 (66), No. 2, 107–116.10.1515/scjme-2016-0025Search in Google Scholar

[6] J. Ge, Y. Sun, S. Zhou, L. Zhang, Y. Zhang, and Q. Zhang. A hybrid frequency–time domain method for predicting multiaxial fatigue life of 7075-T6 aluminium alloy under random loading. Fatigue Fract. Eng. Mater. Struct.2014 (38), 247 – 256.Search in Google Scholar

[7] A. Nieslony, E. Macha. Spectral Method in Multiaxial Random Fatigue. Springer, 2007.Search in Google Scholar

[8] Karolczuk, E. Macha. A Review of Critical Plane Orientations in Multiaxial Fatigue Failure Criteria of Metallic Materials. Int. J. Fract.2005 (134), No. 3–4, 267 – 304.Search in Google Scholar

[9] K. Walat, M. Kurek, P. Ogonowski, T. Łagoda. The multiaxial random fatigue criteria based on strain and energy damage parameters on the critical plane for the low-cycle range. Int. J. Fatigue2012 (37), 100–111.10.1016/j.ijfatigue.2011.09.013Search in Google Scholar

[10] K. Kluger, T. Łagoda. Fatigue life of metallic material estimated according to selected models and load conditions. J. Theor. Appl. Mech.2013 (51), No. 3, 581 – 592.Search in Google Scholar

[11] K. Kluger. Fatigue life estimation for 2017A-T4 and 6082-T6 aluminium alloys subjected to bending-torsion with mean stress. Int. J. Fatigue2015 (80), 22 – 29.10.1016/j.ijfatigue.2015.05.005Search in Google Scholar

[12] R. Owsinski, et al. Evaluation of fatigue life of steel using steel grain size. Materialwiss. Werkstofftech.2015 (46), No. 10, 1059 – 1067.Search in Google Scholar

[13] Niesłony, A. et al. Durability Tests Acceleration Performed on Machine Components Using Electromagnetic Shakers. In: Dynamical Systems: Theoretical and Experimental Analysis. Springer, Cham 2016, 293 – 305.10.1007/978-3-319-42408-8_23Search in Google Scholar

[14] R. Owsiński, A. Niesłony. Analytical Model of Dynamic Behaviour of Fatigue Test Stand – Description and Experimental Validation. In: Dynamical Systems: Modelling2015, 293 – 317.10.1007/978-3-319-42402-6_24Search in Google Scholar

eISSN:
2450-5471
Sprache:
Englisch
Zeitrahmen der Veröffentlichung:
2 Hefte pro Jahr
Fachgebiete der Zeitschrift:
Technik, Maschinenbau, Grundlagen des Maschinenbaus, Mechanik