Accès libre

Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma

À propos de cet article

Citez

1. Azoury SC, Lange JR. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am. 2014; 94(5): 945–62.10.1016/j.suc.2014.07.01325245960Search in Google Scholar

2. Boyers LN, Karimkhani C, Naghavi M et al. Global mortality from conditions with skin manifestations. J Am Acad Dermatol. 2014; 71(6): 1137–1143.10.1016/j.jaad.2014.08.02225282129Search in Google Scholar

3. Berwick M, Wiggins C. The current epidemiology of cutaneous malignant melanoma. Front Biosci. 2006; 11: 1244–54.10.2741/187716368510Search in Google Scholar

4. Thrift AP, Whiteman DC. Can we really predict risk of cancer? Cancer Epidemiol. 2013; 37(4): 349–52.10.1016/j.canep.2013.04.00223643191Search in Google Scholar

5. DeVita VT. RS, Hellman S. Cancer: Principle and Practice of Oncology. 7th ed: Lippncott Williams & Wilkins; 2004.Search in Google Scholar

6. Iles MM, Bishop DT, Taylor JC, GenoMEL Consortium. The effect on melanoma risk of genes previously associated with telomere length. J Natl Cancer Inst 2014; 106(10). pii: dju267.Search in Google Scholar

7. Tucker MA, Goldstein AM. Melanoma etiology: where are we? Oncogene 2003; 22(20): 3042–52.Search in Google Scholar

8. Chang C, Murzaku EC, Penn L et al. More skin, more sun, more tan, more melanoma. Am J Public Health. 2014; 104(11): e92–9.10.2105/AJPH.2014.302185420294725211764Search in Google Scholar

9. Svobodova A, Zdarilova A, Maliskova J et al. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J Dermatol Sci. 2007; 46(1): 21–30.10.1016/j.jdermsci.2006.12.00917289350Search in Google Scholar

10. Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011; 164(4): 776–84.10.1111/j.1365-2133.2010.10185.x21166657Search in Google Scholar

11. Liu J, Fukunaga-Kalabis M, Li L et al. Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys. 2014; 563C: 13–21.10.1016/j.abb.2014.07.023422138325109840Search in Google Scholar

12. Carlino MS, Todd JR, Gowrishankar K et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol Oncol. 2014; 8(3): 544–54.10.1016/j.molonc.2014.01.003552864424476679Search in Google Scholar

13. Tomei S, Bedognetti D, De Giorgi V et al. The immune-related role of BRAF in melanoma. Mol Oncol 2015; 9(1): 93–104.10.1016/j.molonc.2014.07.014450079225174651Search in Google Scholar

14. Conrad WH, Swift RD, Biechele TL et al. Regulating the response to targeted MEK inhibition in melanoma: enhancing apoptosis in NRAS- and BRAF-mutant melanoma cells with Wnt/β-catenin activation. Cell Cycle. 2012; 11(20): 3724–30.10.4161/cc.21645349581422895053Search in Google Scholar

15. Rojas AM, Fuentes G, Rausell A et al. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012; 196(2): 189–201.10.1083/jcb.201103008326594822270915Search in Google Scholar

16. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011; 3(14): 1787–808.10.4155/fmc.11.121334764122004085Search in Google Scholar

17. Gysin S, Salt M, Young A et al. Therapeutic strategies for targeting ras proteins. Genes Cancer 2011; 2(3): 359–72.10.1177/1947601911412376312864121779505Search in Google Scholar

18. Martin-Liberal J, Larkin J. New RAF kinase inhibitors in cancer therapy. Expert Opin Pharmacother. 2014; 15(9): 1235–45.10.1517/14656566.2014.91128624766074Search in Google Scholar

19. Mandalà M, Voit C. Targeting BRAF in melanoma: biological and clinical challenges. Crit Rev Oncol Hematol. 2013; 87(3): 239–55.10.1016/j.critrevonc.2013.01.00323415641Search in Google Scholar

20. Yajima I, Kumasaka MY, Thang ND et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signali ng in Malignant Melanoma Progression and Therapy. Dermatol Res Pract. 2012; 2012: 354191.10.1155/2012/354191319530522013435Search in Google Scholar

21. Nogueira C, Kim KH, Sung H et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene. 2010; 29(47): 6222–32.10.1038/onc.2010.349298933820711233Search in Google Scholar

22. Scatolini M, Grand MM, Grosso E et al. Altered molecular pathways in melanocytic lesions. Int J Cancer. 2010; 126(8): 1869–81.10.1002/ijc.2489919795447Search in Google Scholar

23. Jakob JA, Bassett RL Jr, Ng CS et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012; 118(16): 4014–23.10.1002/cncr.26724331096122180178Search in Google Scholar

24. Rozenberg GI, Monahan KB, Torrice C et al. Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation Melanoma Res. 2010; 20(5): 361–71.Search in Google Scholar

25. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007; 445(7130): 851–7.10.1038/nature0566117314971Search in Google Scholar

26. Haydn JM, Hufnagel A, Grimm J et al. The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget. 2014; 5(13): 5040–53.10.18632/oncotarget.2079414812024970815Search in Google Scholar

27. Witkiewicz AK, Knudsen KE, Dicker AP et al. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 2011; 10(15): 2497–503.10.4161/cc.10.15.16776368561321775818Search in Google Scholar

28. Conde-Perez A, Larue L. Human relevance of NRAS/BRAF mouse melanoma models. Eur J Cell Biol. 2014; 93(1–2): 82–6.10.1016/j.ejcb.2013.10.01024342721Search in Google Scholar

29. Wilson W, Merlino G. Flipping the phenotypic switch on novel antimelanoma differentiation strategy. Pigment Cell Melanoma Res. 2013; 26(6):791–3.10.1111/pcmr.12160639697724152043Search in Google Scholar

30. Leachman SA, Carucci J, Kohlmann W et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol. 2009; 61(4): 677. e1–14.10.1016/j.jaad.2009.03.016330779519751883Search in Google Scholar

31. Oikonomou E, Koustas E, Goulielmaki M et al. BRAF vs RAS oncogenes: Are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget. 2014; 5(23): 11752–77.10.18632/oncotarget.2555432298525361007Search in Google Scholar

32. Kumar R, Angelini S, Snellman E, et al. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122(2): 342–8.10.1046/j.0022-202X.2004.22225.x15009715Search in Google Scholar

33. Bauer J, Curtin JA, Pinkel D et al. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007; 127(1): 179–82.10.1038/sj.jid.570049016888631Search in Google Scholar

34. Albino AP, Fountain JW. Molecular genetics of human malignant melanoma. Cancer Treat Res. 1993; 65:201–55.10.1007/978-1-4615-3080-0_88104022Search in Google Scholar

35. Demunter A, Stas M, Degreef H et al. Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. J Invest Dermatol. 2001; 117(6): 1483–9.10.1046/j.0022-202x.2001.01601.x11886512Search in Google Scholar

36. Omholt K, Karsberg S, Platz A et al. Screening of N-ras Codon 61 Mutations in Paired Primary and Metastatic Cutaneous Melanomas: Mutations Occur Early and Persist throughout Tumor Progression. Clin Cancer Res. 2002; 8(11): 3468–74.Search in Google Scholar

37. Bradish JR, Cheng L. Molecular pathology of malignant melanoma: changing the clinical practice paradigm toward a personalized approach. Hum Pathol. 2014; 45(7): 1315–26.10.1016/j.humpath.2014.04.00124856851Search in Google Scholar

38. Abschuetz O, Osen W, Frank K et al. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma. Cancers (Basel). 2012; 4(2): 490–503.10.3390/cancers4020490371269624213320Search in Google Scholar

39. Mar VJ, Wong SQ, Li J et al. BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage. Clin Cancer Res. 2013; 19(17): 4589–98.10.1158/1078-0432.CCR-13-039823833303Search in Google Scholar

40. Jiveskog S, Ragnarsson-Olding B, Platz A et al. N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J Invest Dermatol. 1998; 111(5): 757–61.10.1046/j.1523-1747.1998.00376.x9804334Search in Google Scholar

41. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892): 949–54.10.1038/nature0076612068308Search in Google Scholar

42. Cruz F 3rd, Rubin BP, Wilson D et al. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003; 63(18): 5761–6.Search in Google Scholar

43. Bastian BC, LeBoit PE, Hamm H et al. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998; 58(10): 2170–5.Search in Google Scholar

44. Curtin JA, Stark MS, Pinkel D et al. PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol. 2006; 126(7): 1660–3.10.1038/sj.jid.570031116614723Search in Google Scholar

45. Omholt K, Krockel D, Ringborg U et al. Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res. 2006; 16(2): 197–200.10.1097/01.cmr.0000200488.77970.e316567976Search in Google Scholar

46. Chudnovsky Y, Khavari PA, Adams AE. Melanoma genetics and the development of rational therapeutics. J Clin Invest. 2005; 115(4): 813–24.10.1172/JCI24808107043515841168Search in Google Scholar

47. Stahl JM, Sharma A, Cheung M et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004; 64(19): 7002–10.10.1158/0008-5472.CAN-04-139915466193Search in Google Scholar

48. Held L, Eigentler TK, Metzler G et al. Proliferative activity, chromosomal aberrations, and tumor-specific mutations in the differential diagnosis between blue nevi and melanoma. Am J Pathol. 2013; 182(3): 640–5.10.1016/j.ajpath.2012.11.01023261261Search in Google Scholar

49. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003; 22(20): 3113–22.10.1038/sj.onc.120645112789288Search in Google Scholar

50. Pollock PM, Walker GJ, Glendening JM et al. PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res. 2002; 12(6): 565–75.10.1097/00008390-200212000-0000612459646Search in Google Scholar

51. Stahl JM, Cheung M, Sharma A et al. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003; 63(11): 2881–90.Search in Google Scholar

52. Stewart AL, Mhashilkar AM, Yang XH et al. PI3 kinase blockade by Ad-PTEN inhibits invasion and induces apoptosis in RGP and metastatic melanoma cells. Mol Med. 2002; 8(8): 451–61.10.1007/BF03402025Search in Google Scholar

53. Tsao H, Zhang X, Fowlkes K et al. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 2000; 60(7): 1800–4.Search in Google Scholar

54. Isabel ZY, Fitzpatrick JE. Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol. 2006; 33(1): 33–7.10.1111/j.0303-6987.2006.00420.x16441409Search in Google Scholar

55. Willmore-Payne C, Layfield LJ, Holden JA. c-KIT mutation analysis for diagnosis of gastrointestinal stromal tumors in fine needle aspiration specimens. Cancer. 2005; 105(3): 165–70.10.1002/cncr.2106415822120Search in Google Scholar

56. Fukuda R, Hamamoto N, Uchida Y et al. Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med. 2001; 40(4): 301–3.10.2169/internalmedicine.40.30111334388Search in Google Scholar

57. Curtin JA, Busam K, Pinkel D et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006; 24(26): 4340–6.10.1200/JCO.2006.06.298416908931Search in Google Scholar

58. Cachia AR, Indsto JO, McLaren KM et al. CDKN2A mutation and deletion status in thin and thick primary melanoma. Clin Cancer Res. 2000; 6(9): 3511–5.Search in Google Scholar

59. Grafstrom E, Egyhazi S, Ringborg U et al. Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin Cancer Res. 2005; 11(8): 2991–7.10.1158/1078-0432.CCR-04-173115837753Search in Google Scholar

60. Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006; 6(9): 663–73.10.1038/nrc195416915296Search in Google Scholar

61. Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 2007; 17(1): 31–9.10.1016/j.gde.2006.12.00517208430Search in Google Scholar

eISSN:
1857-8985
ISSN:
1857-9345
Langue:
Anglais