Open Access

Molecular Biology and Genetic Mechanisms in the Progression of the Malignant Skin Melanoma


Cite

1. Azoury SC, Lange JR. Epidemiology, risk factors, prevention, and early detection of melanoma. Surg Clin North Am. 2014; 94(5): 945–62.10.1016/j.suc.2014.07.01325245960Search in Google Scholar

2. Boyers LN, Karimkhani C, Naghavi M et al. Global mortality from conditions with skin manifestations. J Am Acad Dermatol. 2014; 71(6): 1137–1143.10.1016/j.jaad.2014.08.02225282129Search in Google Scholar

3. Berwick M, Wiggins C. The current epidemiology of cutaneous malignant melanoma. Front Biosci. 2006; 11: 1244–54.10.2741/187716368510Search in Google Scholar

4. Thrift AP, Whiteman DC. Can we really predict risk of cancer? Cancer Epidemiol. 2013; 37(4): 349–52.10.1016/j.canep.2013.04.00223643191Search in Google Scholar

5. DeVita VT. RS, Hellman S. Cancer: Principle and Practice of Oncology. 7th ed: Lippncott Williams & Wilkins; 2004.Search in Google Scholar

6. Iles MM, Bishop DT, Taylor JC, GenoMEL Consortium. The effect on melanoma risk of genes previously associated with telomere length. J Natl Cancer Inst 2014; 106(10). pii: dju267.Search in Google Scholar

7. Tucker MA, Goldstein AM. Melanoma etiology: where are we? Oncogene 2003; 22(20): 3042–52.Search in Google Scholar

8. Chang C, Murzaku EC, Penn L et al. More skin, more sun, more tan, more melanoma. Am J Public Health. 2014; 104(11): e92–9.10.2105/AJPH.2014.302185420294725211764Search in Google Scholar

9. Svobodova A, Zdarilova A, Maliskova J et al. Attenuation of UVA-induced damage to human keratinocytes by silymarin. J Dermatol Sci. 2007; 46(1): 21–30.10.1016/j.jdermsci.2006.12.00917289350Search in Google Scholar

10. Lee JH, Choi JW, Kim YS. Frequencies of BRAF and NRAS mutations are different in histological types and sites of origin of cutaneous melanoma: a meta-analysis. Br J Dermatol. 2011; 164(4): 776–84.10.1111/j.1365-2133.2010.10185.x21166657Search in Google Scholar

11. Liu J, Fukunaga-Kalabis M, Li L et al. Developmental pathways activated in melanocytes and melanoma. Arch Biochem Biophys. 2014; 563C: 13–21.10.1016/j.abb.2014.07.023422138325109840Search in Google Scholar

12. Carlino MS, Todd JR, Gowrishankar K et al. Differential activity of MEK and ERK inhibitors in BRAF inhibitor resistant melanoma. Mol Oncol. 2014; 8(3): 544–54.10.1016/j.molonc.2014.01.003552864424476679Search in Google Scholar

13. Tomei S, Bedognetti D, De Giorgi V et al. The immune-related role of BRAF in melanoma. Mol Oncol 2015; 9(1): 93–104.10.1016/j.molonc.2014.07.014450079225174651Search in Google Scholar

14. Conrad WH, Swift RD, Biechele TL et al. Regulating the response to targeted MEK inhibition in melanoma: enhancing apoptosis in NRAS- and BRAF-mutant melanoma cells with Wnt/β-catenin activation. Cell Cycle. 2012; 11(20): 3724–30.10.4161/cc.21645349581422895053Search in Google Scholar

15. Rojas AM, Fuentes G, Rausell A et al. The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol. 2012; 196(2): 189–201.10.1083/jcb.201103008326594822270915Search in Google Scholar

16. Baines AT, Xu D, Der CJ. Inhibition of Ras for cancer treatment: the search continues. Future Med Chem. 2011; 3(14): 1787–808.10.4155/fmc.11.121334764122004085Search in Google Scholar

17. Gysin S, Salt M, Young A et al. Therapeutic strategies for targeting ras proteins. Genes Cancer 2011; 2(3): 359–72.10.1177/1947601911412376312864121779505Search in Google Scholar

18. Martin-Liberal J, Larkin J. New RAF kinase inhibitors in cancer therapy. Expert Opin Pharmacother. 2014; 15(9): 1235–45.10.1517/14656566.2014.91128624766074Search in Google Scholar

19. Mandalà M, Voit C. Targeting BRAF in melanoma: biological and clinical challenges. Crit Rev Oncol Hematol. 2013; 87(3): 239–55.10.1016/j.critrevonc.2013.01.00323415641Search in Google Scholar

20. Yajima I, Kumasaka MY, Thang ND et al. RAS/RAF/MEK/ERK and PI3K/PTEN/AKT Signali ng in Malignant Melanoma Progression and Therapy. Dermatol Res Pract. 2012; 2012: 354191.10.1155/2012/354191319530522013435Search in Google Scholar

21. Nogueira C, Kim KH, Sung H et al. Cooperative interactions of PTEN deficiency and RAS activation in melanoma metastasis. Oncogene. 2010; 29(47): 6222–32.10.1038/onc.2010.349298933820711233Search in Google Scholar

22. Scatolini M, Grand MM, Grosso E et al. Altered molecular pathways in melanocytic lesions. Int J Cancer. 2010; 126(8): 1869–81.10.1002/ijc.2489919795447Search in Google Scholar

23. Jakob JA, Bassett RL Jr, Ng CS et al. NRAS mutation status is an independent prognostic factor in metastatic melanoma. Cancer. 2012; 118(16): 4014–23.10.1002/cncr.26724331096122180178Search in Google Scholar

24. Rozenberg GI, Monahan KB, Torrice C et al. Metastasis in an orthotopic murine model of melanoma is independent of RAS/RAF mutation Melanoma Res. 2010; 20(5): 361–71.Search in Google Scholar

25. Gray-Schopfer V, Wellbrock C, Marais R. Melanoma biology and new targeted therapy. Nature. 2007; 445(7130): 851–7.10.1038/nature0566117314971Search in Google Scholar

26. Haydn JM, Hufnagel A, Grimm J et al. The MAPK pathway as an apoptosis enhancer in melanoma. Oncotarget. 2014; 5(13): 5040–53.10.18632/oncotarget.2079414812024970815Search in Google Scholar

27. Witkiewicz AK, Knudsen KE, Dicker AP et al. The meaning of p16(ink4a) expression in tumors: functional significance, clinical associations and future developments. Cell Cycle. 2011; 10(15): 2497–503.10.4161/cc.10.15.16776368561321775818Search in Google Scholar

28. Conde-Perez A, Larue L. Human relevance of NRAS/BRAF mouse melanoma models. Eur J Cell Biol. 2014; 93(1–2): 82–6.10.1016/j.ejcb.2013.10.01024342721Search in Google Scholar

29. Wilson W, Merlino G. Flipping the phenotypic switch on novel antimelanoma differentiation strategy. Pigment Cell Melanoma Res. 2013; 26(6):791–3.10.1111/pcmr.12160639697724152043Search in Google Scholar

30. Leachman SA, Carucci J, Kohlmann W et al. Selection criteria for genetic assessment of patients with familial melanoma. J Am Acad Dermatol. 2009; 61(4): 677. e1–14.10.1016/j.jaad.2009.03.016330779519751883Search in Google Scholar

31. Oikonomou E, Koustas E, Goulielmaki M et al. BRAF vs RAS oncogenes: Are mutations of the same pathway equal? Differential signalling and therapeutic implications. Oncotarget. 2014; 5(23): 11752–77.10.18632/oncotarget.2555432298525361007Search in Google Scholar

32. Kumar R, Angelini S, Snellman E, et al. BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol. 2004;122(2): 342–8.10.1046/j.0022-202X.2004.22225.x15009715Search in Google Scholar

33. Bauer J, Curtin JA, Pinkel D et al. Congenital melanocytic nevi frequently harbor NRAS mutations but no BRAF mutations. J Invest Dermatol. 2007; 127(1): 179–82.10.1038/sj.jid.570049016888631Search in Google Scholar

34. Albino AP, Fountain JW. Molecular genetics of human malignant melanoma. Cancer Treat Res. 1993; 65:201–55.10.1007/978-1-4615-3080-0_88104022Search in Google Scholar

35. Demunter A, Stas M, Degreef H et al. Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. J Invest Dermatol. 2001; 117(6): 1483–9.10.1046/j.0022-202x.2001.01601.x11886512Search in Google Scholar

36. Omholt K, Karsberg S, Platz A et al. Screening of N-ras Codon 61 Mutations in Paired Primary and Metastatic Cutaneous Melanomas: Mutations Occur Early and Persist throughout Tumor Progression. Clin Cancer Res. 2002; 8(11): 3468–74.Search in Google Scholar

37. Bradish JR, Cheng L. Molecular pathology of malignant melanoma: changing the clinical practice paradigm toward a personalized approach. Hum Pathol. 2014; 45(7): 1315–26.10.1016/j.humpath.2014.04.00124856851Search in Google Scholar

38. Abschuetz O, Osen W, Frank K et al. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma. Cancers (Basel). 2012; 4(2): 490–503.10.3390/cancers4020490371269624213320Search in Google Scholar

39. Mar VJ, Wong SQ, Li J et al. BRAF/NRAS wild-type melanomas have a high mutation load correlating with histologic and molecular signatures of UV damage. Clin Cancer Res. 2013; 19(17): 4589–98.10.1158/1078-0432.CCR-13-039823833303Search in Google Scholar

40. Jiveskog S, Ragnarsson-Olding B, Platz A et al. N-ras mutations are common in melanomas from sun-exposed skin of humans but rare in mucosal membranes or unexposed skin. J Invest Dermatol. 1998; 111(5): 757–61.10.1046/j.1523-1747.1998.00376.x9804334Search in Google Scholar

41. Davies H, Bignell GR, Cox C et al. Mutations of the BRAF gene in human cancer. Nature. 2002; 417(6892): 949–54.10.1038/nature0076612068308Search in Google Scholar

42. Cruz F 3rd, Rubin BP, Wilson D et al. Absence of BRAF and NRAS mutations in uveal melanoma. Cancer Res. 2003; 63(18): 5761–6.Search in Google Scholar

43. Bastian BC, LeBoit PE, Hamm H et al. Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. Cancer Res. 1998; 58(10): 2170–5.Search in Google Scholar

44. Curtin JA, Stark MS, Pinkel D et al. PI3-kinase subunits are infrequent somatic targets in melanoma. J Invest Dermatol. 2006; 126(7): 1660–3.10.1038/sj.jid.570031116614723Search in Google Scholar

45. Omholt K, Krockel D, Ringborg U et al. Mutations of PIK3CA are rare in cutaneous melanoma. Melanoma Res. 2006; 16(2): 197–200.10.1097/01.cmr.0000200488.77970.e316567976Search in Google Scholar

46. Chudnovsky Y, Khavari PA, Adams AE. Melanoma genetics and the development of rational therapeutics. J Clin Invest. 2005; 115(4): 813–24.10.1172/JCI24808107043515841168Search in Google Scholar

47. Stahl JM, Sharma A, Cheung M et al. Deregulated Akt3 activity promotes development of malignant melanoma. Cancer Res. 2004; 64(19): 7002–10.10.1158/0008-5472.CAN-04-139915466193Search in Google Scholar

48. Held L, Eigentler TK, Metzler G et al. Proliferative activity, chromosomal aberrations, and tumor-specific mutations in the differential diagnosis between blue nevi and melanoma. Am J Pathol. 2013; 182(3): 640–5.10.1016/j.ajpath.2012.11.01023261261Search in Google Scholar

49. Wu H, Goel V, Haluska FG. PTEN signaling pathways in melanoma. Oncogene. 2003; 22(20): 3113–22.10.1038/sj.onc.120645112789288Search in Google Scholar

50. Pollock PM, Walker GJ, Glendening JM et al. PTEN inactivation is rare in melanoma tumours but occurs frequently in melanoma cell lines. Melanoma Res. 2002; 12(6): 565–75.10.1097/00008390-200212000-0000612459646Search in Google Scholar

51. Stahl JM, Cheung M, Sharma A et al. Loss of PTEN promotes tumor development in malignant melanoma. Cancer Res. 2003; 63(11): 2881–90.Search in Google Scholar

52. Stewart AL, Mhashilkar AM, Yang XH et al. PI3 kinase blockade by Ad-PTEN inhibits invasion and induces apoptosis in RGP and metastatic melanoma cells. Mol Med. 2002; 8(8): 451–61.10.1007/BF03402025Search in Google Scholar

53. Tsao H, Zhang X, Fowlkes K et al. Relative reciprocity of NRAS and PTEN/MMAC1 alterations in cutaneous melanoma cell lines. Cancer Res. 2000; 60(7): 1800–4.Search in Google Scholar

54. Isabel ZY, Fitzpatrick JE. Expression of c-kit (CD117) in Spitz nevus and malignant melanoma. J Cutan Pathol. 2006; 33(1): 33–7.10.1111/j.0303-6987.2006.00420.x16441409Search in Google Scholar

55. Willmore-Payne C, Layfield LJ, Holden JA. c-KIT mutation analysis for diagnosis of gastrointestinal stromal tumors in fine needle aspiration specimens. Cancer. 2005; 105(3): 165–70.10.1002/cncr.2106415822120Search in Google Scholar

56. Fukuda R, Hamamoto N, Uchida Y et al. Gastrointestinal stromal tumor with a novel mutation of KIT proto-oncogene. Intern Med. 2001; 40(4): 301–3.10.2169/internalmedicine.40.30111334388Search in Google Scholar

57. Curtin JA, Busam K, Pinkel D et al. Somatic activation of KIT in distinct subtypes of melanoma. J Clin Oncol. 2006; 24(26): 4340–6.10.1200/JCO.2006.06.298416908931Search in Google Scholar

58. Cachia AR, Indsto JO, McLaren KM et al. CDKN2A mutation and deletion status in thin and thick primary melanoma. Clin Cancer Res. 2000; 6(9): 3511–5.Search in Google Scholar

59. Grafstrom E, Egyhazi S, Ringborg U et al. Biallelic deletions in INK4 in cutaneous melanoma are common and associated with decreased survival. Clin Cancer Res. 2005; 11(8): 2991–7.10.1158/1078-0432.CCR-04-173115837753Search in Google Scholar

60. Sherr CJ. Divorcing ARF and p53: an unsettled case. Nat Rev Cancer. 2006; 6(9): 663–73.10.1038/nrc195416915296Search in Google Scholar

61. Dhomen N, Marais R. New insight into BRAF mutations in cancer. Curr Opin Genet Dev. 2007; 17(1): 31–9.10.1016/j.gde.2006.12.00517208430Search in Google Scholar

eISSN:
1857-8985
ISSN:
1857-9345
Language:
English
Publication timeframe:
2 times per year
Journal Subjects:
Medicine, Basic Medical Science, History and Ethics of Medicine, Clinical Medicine, other, Social Sciences, Education