1. bookVolume 16 (2016): Edition 6 (December 2016)
Détails du magazine
License
Format
Magazine
eISSN
1335-8871
Première parution
07 Mar 2008
Périodicité
6 fois par an
Langues
Anglais
Accès libre

A Regression-Based Family of Measures for Full-Reference Image Quality Assessment

Publié en ligne: 13 Dec 2016
Volume & Edition: Volume 16 (2016) - Edition 6 (December 2016)
Pages: 316 - 325
Reçu: 18 Aug 2016
Accepté: 28 Nov 2016
Détails du magazine
License
Format
Magazine
eISSN
1335-8871
Première parution
07 Mar 2008
Périodicité
6 fois par an
Langues
Anglais

[1] Chandler, D. M. (2013). Seven challenges in image quality assessment: Past, present, and future research. SRN Signal Processing, 2013, art. ID 905685.10.1155/2013/905685Search in Google Scholar

[2] Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J.,Vozel, B., Chehdi, K., Carli, M., Battisti, F., Kuo, C.-C. J. (2015). Image database TID2013: Peculiarities results and perspectives. Signal Processing: Image Communication, 30, 57-77.Search in Google Scholar

[3] Anbarjafari, G. (2015). An objective no-reference measure of illumination assessment. Measurement Science Review, 15(6), 319-322.10.1515/msr-2015-0043Search in Google Scholar

[4] Valenzise, G., Magni, S., Tagliasacchi, M., Tubaro, S. (2012). No-reference pixel video quality monitoring of channel-induced distortion. IEEE Transactions on Circuits and Systems for Video Technology, 22 (4), 605-618.10.1109/TCSVT.2011.2171211Search in Google Scholar

[5] Li, X., Guo, Q., Lu, X. (2016). Spatiotemporal statistics for video quality assessment. IEEE Transactions on Image Processing, 25 (7), 3329-3342.10.1109/TIP.2016.256875227187966Search in Google Scholar

[6] Damera-Venkata, N., Kite, T. D., Geisler, W. S., Evans, B. L., Bovik, A. C. (2000). Image quality assessment based on a degradation model. IEEE Transactions on Image Processing, 9 (4), 636-650.10.1109/83.84194018255436Search in Google Scholar

[7] Wang, Z., Bovik, A. C. (2002). A universal image quality index. IEEE Signal Processing Letters, 9 (3), 81-84.10.1109/97.995823Search in Google Scholar

[8] Wang, Z., Bovik, A. C., Sheikh, H. R., Simoncelli, E. P. (2004). Image quality assessment: From error visibility to structural similarity. IEEE Transactions on Image Processing, 13 (4), 600-612.10.1109/TIP.2003.819861Search in Google Scholar

[9] Wang, Z., Simoncelli, E. P., Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. n 37th Asilomar Conference on Signals, Systems & Computers. IEEE, 1398-1402.10.1109/ACSSC.2003.1292216Search in Google Scholar

[10] Wang, Z., Li, Q. (2011). Information content weighting for perceptual image quality assessment. IEEE Transactions on Image Processing, 20 (5), 1185-1198.10.1109/TIP.2010.209243521078577Search in Google Scholar

[11] Sheikh, H. R., Bovik, A. C. (2006). Image information and visual quality. IEEE Transactions on Image Processing, 15 (2), 430-444.10.1109/TIP.2005.859378Search in Google Scholar

[12] Sheikh, H., Bovik, A., de Veciana, G. (2005). An information fidelity criterion for image quality assessment using natural scene statistics. IEEE Transactions on Image Processing, 14 (12), 2117-2128.10.1109/TIP.2005.859389Search in Google Scholar

[13] Zhang, L., Zhang, L., Mou, X., Zhang, D. (2011). SIM: A feature similarity index for image quality assessment. IEEE Transactions on Image Processing, 20 (8), 2378-2386.10.1109/TIP.2011.210973021292594Search in Google Scholar

[14] Zhang, L., Li, H. (2012). SR-FSIM: A fast and high performance IQA index based on spectral residual. In: 19th IEEE International Conference on Image Processing. IEEE, 1473-1476.Search in Google Scholar

[15] Zhang, L., Shen, Y., Li, H. (2014). VSI: A visual saliency-induced index for perceptual image quality assessment. IEEE Transactions on Image Processing, 23 (10), 4270-4281.10.1109/TIP.2014.234602825122572Search in Google Scholar

[16] Zhang, L., Zhang, L., Mou, X. (2010). RFSIM: A feature based image quality assessment metric using Riesz transforms. In 2010 IEEE International Conference on Image Processing. IEEE, 321-324.10.1109/ICIP.2010.5649275Search in Google Scholar

[17] Wang, F., Sun, X., Guo, Z., Huang, Y., Fu, K. (2015). An object-distortion based image quality similarity. IEEE Signal Processing Letters, 22 (10), 1534-1537.10.1109/LSP.2015.2413891Search in Google Scholar

[18] Wu, J., Lin, W., Shi, G. (2014). Image quality assessment with degradation on spatial structure. IEEE Signal Processing Letters, 21 (4), 437-440.10.1109/LSP.2014.2304714Search in Google Scholar

[19] Liu, A., Lin, W., Narwaria, M. (2012). Image quality assessment based on gradient similarity. IEEE Transactions on Image Processing, 21 (4), 1500-1512.Search in Google Scholar

[20] Zhou, F., Lu, Z., Wang, C., Sun, W., Xia, S.-T., Liao, Q. (2015). Image quality assessment based on inter-patch and intra-patch similarity. PLoS ONE, 10 (3), e0116312.10.1371/journal.pone.0116312436876425793282Search in Google Scholar

[21] Guo, S., Xiang, T., Li, X. (2015). Image quality assessment based on multiscale fuzzy gradient similarity deviation. Soft Computing, doi:10.1007/s00500-015-1844-9.Search in Google Scholar

[22] Liu, M., Yang, X. (2009). A new image quality approach based on decision fusion. In Fifth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD ’08). IEEE, 10-14.Search in Google Scholar

[23] Larson, E. C., Chandler, D. M. (2010). Most apparent distortion: Full-reference image quality assessment and the role of strategy. Journal of Electronic Imaging, 19 (1), 011006.Search in Google Scholar

[24] Peng, P., Li, Z.-N. (2012). Regularization of the structural similarity index based on preservation of edge direction. In: 2012 IEEE International Conference on Systems, Man, and Cybernetics (SMC), IEEE, 2127-2132.10.1109/ICSMC.2012.6378054Search in Google Scholar

[25] Saha, A., Wu, Q. M. J. (2014). Full-reference image quality assessment by combining global and local distortion measures. arXiv:1412.5488 [cs.CV].Search in Google Scholar

[26] Okarma, K. (2010). Combined full-reference image quality metric linearly correlated with subjective assessment. In Artificial Intelligence and Soft Computing. Springer, 539-546.10.1007/978-3-642-13208-7_67Search in Google Scholar

[27] Okarma, K. (2013). Extended Hybrid Image Similarity - combined full-reference image quality metric linearly correlated with subjective scores. Elektronika ir Elektrotechnika, 19 (10), 129-132.10.5755/j01.eee.19.10.5908Search in Google Scholar

[28] Oszust, M. (2016). Full-reference image quality assessment with linear combination of genetically selected quality measures. PLoS ONE, 11 (6), 1-17.10.1371/journal.pone.0158333492037727341493Search in Google Scholar

[29] Lahouhou, A., Viennet, E., Beghdadi, A. (2010). Selecting low-level features for image quality assessment by statistical methods. Journal of Computing and Information Technology - CIT, 18 (2), 183-189.10.2498/cit.1001822Search in Google Scholar

[30] Peng, P., Li, Z.-N. (2012). A mixture of experts approach to multi-strategy image quality assessment. In Image Analysis and Recognition, Springer, LNCS 7324, 123-130.10.1007/978-3-642-31295-3_15Search in Google Scholar

[31] Liu, T.-J., Lin, W., Kuo, C.-C. (2013). Image quality assessment using multi-method fusion. IEEE Transactions on Image Processing, 22 (5), 1793-1807.10.1109/TIP.2012.223634323288335Search in Google Scholar

[32] Jin, L., Egiazarian, K., Kuo, C.-C. (2012). Perceptual image quality assessment using block-based multimetric fusion (BMMF). In: IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP). IEEE, 1145-1148.Search in Google Scholar

[33] Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Carli, M. (2011). Modified image visual quality metrics for contrast change and mean shift accounting. In 11th International Conference - The Experience of Designing and Application of CAD Systems in Microelectronics (CADSM). IEEE, 305-311.Search in Google Scholar

[34] Oszust, M. (2016). Image quality assessment with lasso regression and pairwise score differences. Multimedia Tools and Applications, doi:10.1007/s11042-016-3755- x.Search in Google Scholar

[35] Lukin, V. V., Ponomarenko, N. N., Ieremeiev, O. I., Egiazarian, K. O., Astola, J. (2015). Combining full reference image visual quality metrics by neural network. In Human Vision and Electronic Imaging XX, SPIE, Vol. 9394, 93940K.Search in Google Scholar

[36] Yuan, Y., Guo, Q., Lu, X. (2015). Image quality assessment: A sparse learning way. Neurocomputing, 159, 227-241.10.1016/j.neucom.2015.01.066Search in Google Scholar

[37] Neter, J., Kutner, M. H., Nachtsheim, C. J., Wasserman, W. (1996). Applied Linear Statistical Models, Vol. 4. McGraw-Hill/Irwin.Search in Google Scholar

[38] Sheikh, H. R., Sabir, M. F., Bovik, A. C. (2006). A statistical evaluation of recent full reference image quality assessment algorithms. IEEE Transactions on Image Processing, 15 (11), 3440-3451.10.1109/TIP.2006.881959Search in Google Scholar

[39] Video Quality Experts Group (VQEG). (2003). Final report from the video quality experts group on the validation of objective models of video quality assessment, phase ii (fr_tv2). http://bit.ly/2g1TeXz.Search in Google Scholar

[40] Yang, Y., Huang, S., Gao, J., Qian, Z. (2014). Multifocus image fusion using an effective discrete wavelet transform based algorithm. Measurement Science Review, 14 (2), 102-108.10.2478/msr-2014-0014Search in Google Scholar

[41] Chang, H.-W., Zhang, Q.-W., Wu, Q.-Q., Gan, Y. (2015). Perceptual image quality assessment by independent feature detector. Neurocomputing, 151, 1142 -1152.10.1016/j.neucom.2014.04.081Search in Google Scholar

[42] Chang, H.-W., Yang, H., Gan, Y., Wang, M.-H. (2013). Sparse feature fidelity for perceptual image quality assessment. IEEE Transactions on Image Processing, 22 (10), 4007-4018.10.1109/TIP.2013.226657923751962Search in Google Scholar

[43] Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F. (2009). TID2008 - A database for evaluation of full-reference visual quality assessment metrics. Advances of Modern Radioelectronics, 10, 30-45.Search in Google Scholar

[44] Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Professional.Search in Google Scholar

[45] Zou, H., Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B, 67 (2), 301-320.10.1111/j.1467-9868.2005.00503.xSearch in Google Scholar

[46] Pei, S.-C., Chen, L.-H. (2015). Image quality assessment using human visual DOG model fused with random forest. IEEE Transactions on Image Processing, 24 (11), 3282-3292.Search in Google Scholar

[47] Li, S., Zhang, F., Ma, L., Ngan, K. N. (2011). Image quality assessment by separately evaluating detail losses and additive impairments. IEEE Transactions on Multimedia, 13 (5), 935-949.10.1109/TMM.2011.2152382Search in Google Scholar

[48] Wu, J., Lin,W., Shi, G., Liu, A. (2013). Perceptual quality metric with internal generative mechanism. IEEE Transactions on Image Processing, 22 (1), 43-54.Search in Google Scholar

[49] Barri, A., Dooms, A., Jansen, B., Schelkens, P. (2014). A locally adaptive system for the fusion of objective quality measures. IEEE Transactions on Image Processing, 23 (6), 2446-2458. 10.1109/TIP.2014.231637924733011Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo