1. bookVolume 16 (2016): Edition 6 (December 2016)
Détails du magazine
Première parution
07 Mar 2008
6 fois par an
Accès libre

RFID Tag as a Sensor - A Review on the Innovative Designs and Applications

Publié en ligne: 13 Dec 2016
Volume & Edition: Volume 16 (2016) - Edition 6 (December 2016)
Pages: 305 - 315
Reçu: 23 Jun 2016
Accepté: 28 Nov 2016
Détails du magazine
Première parution
07 Mar 2008
6 fois par an

[1] Weinstein, R. (2005). RFID: A technical overview and its application to the enterprise. IT Professional, 7 (3), 27-33.10.1109/MITP.2005.69Search in Google Scholar

[2] Lakafosis, V., Rida, A., Vyas, R., Yang, L., Nikolaou, S., Tentzeris, M.M. (2010). Progress towards the first wireless sensor networks consisting of inkjet-printed, paper-based RFID-enabled sensor tags. Proceedings of the IEEE, 98 (9), 1601-1609.10.1109/JPROC.2010.2049622Search in Google Scholar

[3] Meng, Z., Lu, J. (2016). A rule-based service customization strategy for smart home context-aware automation. IEEE Transactions on Mobile Computing, 15 (3), 558-571.10.1109/TMC.2015.2424427Search in Google Scholar

[4] Occhiuzzi, C., Paggi, C., Marrocco, G. (2011). Passive RFID strain-sensor based on meander-line antennas. IEEE Transactions on Antennas and Propagation, 59 (12), 4836-4840.10.1109/TAP.2011.2165517Search in Google Scholar

[5] Dey, S., Saha, J.K., Karmakar, N.C. (2015). Smart sensing: Chipless RFID solutions for the Internet of Everything. IEEE Microwave Magazine, 16 (10), 26-39.10.1109/MMM.2015.2465711Search in Google Scholar

[6] Gasco, F., Feraboli, P., Braun, J., Smith, J., Stickler, P., DeOto, L. (2011). Wireless strain measurement for structural testing and health monitoring of carbon fiber composites. Composites Part A: Applied Science and Manufacturing, 42 (9), 1263-1274.10.1016/j.compositesa.2011.05.008Search in Google Scholar

[7] Zhang, Y., Bai, L. (2015). Rapid structural condition assessment using radio frequency identification (RFID) based wireless strain sensor. Automation in Construction, 54, 1-11.10.1016/j.autcon.2015.02.013Search in Google Scholar

[8] Sunny, A.I., Tian, G.Y., Zhang, J., Pal, M. (2016). Low frequency (LF) RFID sensors and selective transient feature extraction for corrosion characterisation. Sensors and Actuators A: Physical, 241, 34-43.10.1016/j.sna.2016.02.010Search in Google Scholar

[9] Leon-Salas, W.D., Halmen, C. (2016). A RFID sensor for corrosion monitoring in concrete. IEEE Sensors Journal, 16 (1), 32-42.10.1109/JSEN.2015.2476997Search in Google Scholar

[10] Bhattacharyya, R., Kalansuriya, P., Sarma, S., Karmakar, N. (2012). Towards chipless RFID-based sensing for pervasive surface crack detection. In 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA). IEEE, 46-51.Search in Google Scholar

[11] Caizzone, S., Digiampaolo, E. (2015). Wireless passive RFID crack width sensor for structural health monitoring. IEEE Sensors Journal, 15 (12), 6767-6774.10.1109/JSEN.2015.2457455Search in Google Scholar

[12] Li, Z., Meng, Z. (2016). A review of the radio frequency non-destructive testing for carbon-fibre composites. Measurement Science Review, 16 (2), 68-76.10.1515/msr-2016-0010Search in Google Scholar

[13] Nguyen, D., Phan, G., Pham, T., Le, N. (2013). A battery free RFID sensor for quality detection of food products. In Progress in Electromagnetics Research Symposium Proceedings. PIERS, 583-587.Search in Google Scholar

[14] Potyrailo, R.A., Nagraj, N., Tang, Z., Mondello, F.J., Surman, C., Morris, W. (2012). Battery-free radio frequency identification (RFID) sensors for food quality and safety. Journal of Agricultural and Food Chemistry, 60 (35), 8535-8543.10.1021/jf302416y343432122881825Search in Google Scholar

[15] Donno, D.D., Catarinucci, L., Tarricone, L. (2014). RAMSES: RFID augmented module for smart environmental sensing. IEEE Transactions on Instrumentation and Measurement, 63 (7), 1701-1708.10.1109/TIM.2014.2298692Search in Google Scholar

[16] Tarricone, L. (2013). A long-range computational RFID tag for temperature and acceleration sensing applications. Progress in Electromagnetics Research C, 45, 223-235.Search in Google Scholar

[17] Catarinucci, L., Colella, R., Tarricone, L. (2009). A cost-effective UHF RFID tag for transmission of generic sensor data in wireless sensor networks. IEEE Transactions on Microwave Theory and Techniques, 57 (5), 1291-1296.10.1109/TMTT.2009.2017296Search in Google Scholar

[18] López-Soriano, S., Parrón, J. (2015). Wearable RFID tag antenna for healthcare applications. In 2015 IEEEAPS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 287-290.10.1109/APWC.2015.7300156Search in Google Scholar

[19] Choi, B.-S., Lee, J.-W., Lee, J.-J., Park, K.T. (2011). A hierarchical algorithm for indoor mobile robot localization using RFID sensor fusion. IEEE Transactions on Industrial Electronics, 58 (6), 2226-2235.10.1109/TIE.2011.2109330Search in Google Scholar

[20] Nikitin, P.V., Rao, K.V.S. (2006). Theory and measurement of backscattering from RFID tags. IEEE Antennas and Propagation Magazine, 48 (6), 212-218.10.1109/MAP.2006.323323Search in Google Scholar

[21] EPCglobal Inc. (2013). EPC radio-frequency identity protocols Generation-2 UHF RFID. Version 2.0.0 Ratified.Search in Google Scholar

[22] Powercast Corporation. (2010). P2110 - 915 MHz RF power harvester receiver. REV A - 2014/11.Search in Google Scholar

[23] Donno, D.D., Catarinucci, L., Tarricone, L. (2014). A battery-assisted sensor-enhanced RFID tag enabling heterogeneous wireless sensor networks. IEEE Sensors Journal, 14 (4), 1048-1055.10.1109/JSEN.2013.2293177Search in Google Scholar

[24] Kruesi, C. (2009). Design and development of a novel 3-D cubic antenna for wireless sensor networks (WSNs) and RFID applications. IEEE Antennas and Propagation Magazine, 57 (10), 3293-3299.10.1109/TAP.2009.2028672Search in Google Scholar

[25] Huber, T., et al. (2014). Ultra-low-cost RFID based on soft magnetic ribbons. IEEE Transactions on Magnetics, 50 (10), 1-5.10.1109/TMAG.2014.2327200Search in Google Scholar

[26] Huang, X., et al. (2015). Binder-free highly conductive graphene laminate for low cost printed radio frequency applications. Applied Physics Letters, 106 (20), 203105.10.1063/1.4919935Search in Google Scholar

[27] Shao, S., Kiourti, A., Burkholder, R.J., Volakis, J.L. (2015). Broadband textile-based passive UHF RFID tag antenna for elastic material. IEEE Antennas and Wireless Propagation Letters, 14, 1385-1388.10.1109/LAWP.2015.2407879Search in Google Scholar

[28] Yang, L., Martin, L.J., Staiculescu, D., Wong, C.P., Tentzeris, M.M. (2008). Conformal magnetic composite RFID for wearable RF and bio-monitoring applications. IEEE Transactions on Microwave Theory and Techniques, 56 (12), 3223-3230.10.1109/TMTT.2008.2006810Search in Google Scholar

[29] Tedjini, S., Karmakar, N., Perret, E., Vena, A., Koswatta, R., E-Azim, R. (2013). Hold the chips: Chipless technology, an alternative technique for RFID. IEEE Microwave Magazine, 14 (5), 56-65.10.1109/MMM.2013.2259393Search in Google Scholar

[30] Kalansuriya, P., Karmakar, N.C., Viterbo, E. (2012). On the detection of frequency-spectra-based chipless RFID using UWB impulsed interrogation. IEEE Transactions on Microwave Theory and Techniques, 60 (12), 4187-4197.10.1109/TMTT.2012.2222920Search in Google Scholar

[31] Balbin, I., Karmakar, N.C. (2009). Phase-encoded chipless RFID transponder for large scale low cost applications. IEEE Microwave and Wireless Components Letters, 19 (8), 509-511.10.1109/LMWC.2009.2024840Search in Google Scholar

[32] Singh, T., Tedjini, S., Perret, E., Vena, A. (2011). A frequency signature based method for the RF identification of letters. In 2011 IEEE International Conference on RFID. IEEE, 1-5.10.1109/RFID.2011.5764628Search in Google Scholar

[33] You, K., Kim, H., Kim, M., Yang, Y. (2011). 900 MHz CMOS RF-to-DC converter using a crosscoupled charge pump for energy harvesting. In 2011 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT). IEEE, 149-152.10.1109/RFIT.2011.6141795Search in Google Scholar

[34] Ramos, A., Girbau, D., Lázaro, A., Collado, A., Georgiadis, A. (2015). Solar-powered wireless temperature sensor based on UWB RFID with selfcalibration. IEEE Sensors Journal, 15 (7), 3764-3772.10.1109/JSEN.2015.2399972Search in Google Scholar

[35] Xiao, Z., et al. (2015). An implantable RFID sensor tag toward continuous glucose monitoring. IEEE Journal of Biomedical and Health Informatics, 19 (3), 910-919.10.1109/JBHI.2015.241583625823049Search in Google Scholar

[36] Salmeron, J.F., et al. (2014). Design and development of sensing RFID tags on flexible foil compatible with EPC gen 2. IEEE Sensors Journal, 14 (12), 4361-4371.10.1109/JSEN.2014.2335417Search in Google Scholar

[37] Law, M.K., Bermak, A., Luong, H.C. (2010). A sub-μ W embedded CMOS temperature sensor for RFID food monitoring application. IEEE Journal of Solid- State Circuits, 45 (6), 1246-1255.10.1109/JSSC.2010.2047456Search in Google Scholar

[38] Kellomäki, T. (2012). On-body performance of a wearable single-layer RFID tag. IEEE Antennas and Wireless Propagation Letters, 11, 73-76.10.1109/LAWP.2012.2183112Search in Google Scholar

[39] Occhiuzzi, C., Cippitelli, S., Marrocco, G. (2010). Modeling, design and experimentation of wearable RFID sensor tag. IEEE Transactions on Antennas and Propagation, 58 (8), 2490-2498.10.1109/TAP.2010.2050435Search in Google Scholar

[40] Kalansuriya, P., Bhattacharyya, R., Sarma, S. (2013). RFID tag antenna-based sensing for pervasive surface crack detection. IEEE Sensors Journal, 13 (5), 1564-1570.10.1109/JSEN.2013.2240155Search in Google Scholar

[41] Murthy, S.G.N. (2015). Batteryless Wireless RFID based embedded sensors for long term monitoring of reinforced concrete structures. In 2015 International Symposium Non-Destructive Testing in Civil Engineering, 1-8.Search in Google Scholar

[42] Kim, J., Wang, Z., Kim, W.S. (2014). Stretchable RFID for wireless strain sensing with silver nano ink. IEEE Sensors Journal, 14 (12), 4395-4401.10.1109/JSEN.2014.2335743Search in Google Scholar

[43] Hasani, M., Vena, A., Sydänheimo, L., Ukkonen, L., Tentzeris, M.M. (2013). Implementation of a dual interrogation mode embroidered RFID-enabled strain sensor. IEEE Antennas and Wireless Propagation Letters, 12, 1272-1275.10.1109/LAWP.2013.2283539Search in Google Scholar

[44] Manzari, S., Catini, A., Pomarico, G., Di Natale, C., Marrocco, G. (2014). Development of an UHF RFID chemical sensor array for battery-less ambient sensing. IEEE Sensors Journal, 14 (10), 3616-3623.10.1109/JSEN.2014.2329268Search in Google Scholar

[45] Occhiuzzi, C., Rida, A., Marrocco, G., Tentzeris, M.M. (2011). CNT-based RFID passive gas sensor. In 2011 IEEE MTT-S International Microwave Symposium Digest. IEEE, 1-4.Search in Google Scholar

[46] Yang, L., Zhang, R., Staiculescu, D. (2009). A novel conformal RFID-Enabled module utilizing inkjetprinted antennas and carbon nanotubes for gasdetection applications. IEEE Antennas and Wireless Propagation Letters, 8, 653-656.10.1109/LAWP.2009.2024104Search in Google Scholar

[47] Jia, Y., Heiß, M., Fu, Q., Gay, N.A. (2009). A prototype RFID humidity sensor for built environment monitoring. In International Workshop on Education Technology and Training and International Workshop on Geoscience and Remote Sensing (ETT and GRS 2008). IEEE, 496-499.Search in Google Scholar

[48] Qi, Z., Zhuang, Y., Li, X., Liu, W., Du, Y., Wang, B. (2014). Full passive UHF RFID tag with an ultra-low power, small area, high resolution temperature sensor suitable for environment monitoring. Microelectronics Journal, 45 (1), 126-131.10.1016/j.mejo.2013.10.010Search in Google Scholar

[49] Tan, Z., et al. (2013). A 1.2-V 8.3-nJ CMOS humidity sensor for RFID applications. IEEE Journal of Solid- State Circuits, 48 (10), 2469-2477.Search in Google Scholar

[50] Wu, X., Deng, F., Hao, Y., Fu, Z., Zhang, L. (2015). Design of a humidity sensor tag for passive wireless applications. Sensors, 15 (10), 25564-25576.10.3390/s151025564463449126457707Search in Google Scholar

[51] Feng, Y., Xie, L., Chen, Q., Zheng, L.-R. (2015). Low-cost printed chipless RFID humidity sensor tag for intelligent packaging. IEEE Sensors Journal, 15 (6), 3201-3208.10.1109/JSEN.2014.2385154Search in Google Scholar

[52] Fernandez-Salmeron, J., et al. (2015). HF RFID tag as humidity sensor: Two different approaches. IEEE Sensors Journal, 15 (10), 5726-5733.10.1109/JSEN.2015.2447031Search in Google Scholar

[53] Luvisi, A., Panattoni, A., Materazzi, A. (2016). RFID temperature sensors for monitoring soil solarization with biodegradable films. Computers and Electronics in Agriculture, 123, 135-141.10.1016/j.compag.2016.02.023Search in Google Scholar

[54] Yin, J., et al. (2010). A system-on-chip EPC Gen-2 passive UHF RFID tag with embedded temperature sensor. IEEE Journal of Solid-State Circuits, 45 (11), 2404-2420.10.1109/ISSCC.2010.5433893Search in Google Scholar

[55] Fiddes, L.K., Chang, J., Yan, N. (2014). Electrochemical detection of biogenic amines during food spoilage using an integrated sensing RFID tag. Sensors and Actuators B: Chemical, 202, 1298-1304.10.1016/j.snb.2014.05.106Search in Google Scholar

[56] Eom, K.H., Kim, M.C., Lee, S.J., won Lee, C. (2012). The vegetable freshness monitoring system using RFID with oxygen and carbon dioxide sensor. International Journal of Distributed Sensor Networks, 8 (6), 472986.10.1155/2012/472986Search in Google Scholar

[57] Le, G.T., Tran, T.V., Lee, H.-S., Chung, W.-Y. (2016). Long-range batteryless RF sensor for monitoring the freshness of packaged vegetables. Sensors and Actuators A: Physical, 237, 20-28.10.1016/j.sna.2015.11.013Search in Google Scholar

[58] Hyun, K.H., Lee, C.W., Kim, J.W., Eom, K.H. (2014). Food monitoring system using 15.36MHz and 900MHz smart RFID tag. Advanced Science and Technology Letters, 49, 136-143.Search in Google Scholar

[59] Badia-Melis, R., Ruiz-Garcia, L., Garcia-Hierro, J., Villalba, J.I.R. (2015). Refrigerated fruit storage monitoring combining two different wireless sensing technologies: RFID and WSN. Sensors, 15 (3), 4781-4795.10.3390/s150304781443519525730482Search in Google Scholar

[60] Saravanan, M.S., Singh, J.K., Thirumoorthy, N. (2014). RFID sensors for food safety centre by identifying the physical factors that affecting the food. In 2014 International Conference on Information Communication and Embedded Systems (ICICES). IEEE, 1-6.10.1109/ICICES.2014.7033876Search in Google Scholar

[61] Wang, J., Ni, D., Li, K. (2014). RFID-based vehicle positioning and its applications in connected vehicles. Sensors, 14 (3), 4225-4238.10.3390/s140304225400394124599188Search in Google Scholar

[62] Shirehjini, A.A.N., Yassine, A., Shirmohammadi, S. (2012). Equipment location in hospitals using RFIDbased positioning system. IEEE Transactions on Information Technology in Biomedicine, 16 (6), 1058-1069.10.1109/TITB.2012.2204896Search in Google Scholar

[63] Miah, M.S., Gueaieb, W. (2014). Mobile robot trajectory tracking using noisy RSS measurements: An RFID approach. ISA Transactions, 53 (2), 433-443.10.1016/j.isatra.2013.09.01624268746Search in Google Scholar

[64] Seok, J.-H., Lee, J.-Y., Oh, Ch., Lee, J.-J., Lee, H.J. (2010). RFID sensor deployment using differential evolution for indoor mobile robot localization. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). IEEE, 3719-3724.Search in Google Scholar

[65] Liu, G., Mao, L., Chen, L., Xie, S. (2014). Locatablebody temperature monitoring based on semi-active UHF RFID tags. Sensors, 14 (4), 5952-5966.10.3390/s140405952402971324675759Search in Google Scholar

[66] Song, X., Li, X., Tang, W., Zhang, W., Li, B. (2014). A hybrid positioning strategy for vehicles in a tunnel based on RFID and in-vehicle sensors. Sensors, 14 (12), 23095-23118.10.3390/s141223095429905425490581Search in Google Scholar

[67] Huang, C.-H., Lee, L.-H., Ho, C.C., Wu, L.-L., Lai, Z.-H. (2015). Real-time RFID indoor positioning system based on Kalman-filter drift removal and Heron-bilateration location estimation. IEEE Transactions on Instrumentation and Measurement, 64 (3), 728-739.10.1109/TIM.2014.2347691Search in Google Scholar

[68] Dian, Z., Kezhong, L., Rui, M. (2015). A precise RFID indoor localization system with sensor network assistance. China Communications, 12 (4), 13-22.10.1109/CC.2015.7114062Search in Google Scholar

[69] Cangialosi, A., Monaly, J.E., Yang, S.C. (2007). Leveraging RFID in hospitals: Patient life cycle and mobility perspectives. IEEE Communications Magazine, 45 (9), 18-23.10.1109/MCOM.2007.4342874Search in Google Scholar

[70] Vaz, A., et al. (2010). Full passive UHF tag with a temperature sensor suitable for human body temperature monitoring. IEEE Transactions on Circuits and Systems II: Express Briefs, 57 (2), 95-99.10.1109/TCSII.2010.2040314Search in Google Scholar

[71] Rakibet, O.O., Rumens, C.V., Batchelor, J.C., Holder, S.J. (2014). Epidermal passive RFID strain sensor for assisted technologies. IEEE Antennas and Wireless Propagation Letters, 13, 814-817.10.1109/LAWP.2014.2318996Search in Google Scholar

[72] Rose, D.P., et al. (2015). Adhesive RFID sensor patch for monitoring of sweat electrolytes. IEEE Transactions on Biomedical Engineering, 62 (6), 1457-1465.10.1109/TBME.2014.236999125398174Search in Google Scholar

[73] Wickramasinghe, A., Ranasinghe, D.C. (2015). Ambulatory monitoring using passive computational RFID sensors. IEEE Sensors Journal, 15 (10), 5859-5869.10.1109/JSEN.2015.2449862Search in Google Scholar

[74] Barman, J., et al. (2012). Sensor-enabled RFID system for monitoring arm activity: Reliability and validity. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 20 (6), 771-777.10.1109/TNSRE.2012.221056122875260Search in Google Scholar

[75] Wang, L., et al. (2016). Toward a wearable RFID system for real-time activity recognition using radio patterns. IEEE Transactions on Mobile Computing, 6 (1), 1-13.Search in Google Scholar

[76] Smith, B.J.R., et al. (2005). RFID-based techniques for human-activity detection. Communications of the ACM, 48 (9), 39-44.10.1145/1081992.1082018Search in Google Scholar

[77] Potyrailo, R.A., Mouquin, H., Morris, W.G. (2008). Position-independent chemical quantitation with passive 13.56-MHz radio frequency identification (RFID) sensors. Talanta, 75 (3), 624-628.Search in Google Scholar

[78] Ramos, A., Girbau, D., Lazaro, A., Villarino, R. (2015). Wireless concrete mixture composition sensor based on time-coded UWB RFID. IEEE Microwave and Wireless Components Letters, 25 (10), 681-683.10.1109/LMWC.2015.2463105Search in Google Scholar

[79] Lei, Z., Zhi, W. (2006). Integration of RFID into wireless sensor networks: Architectures, opportunities and challenging problems. In Fifth International Conference on Grid and Cooperative Computing Workshops (GCCW '06). IEEE, 463-469.Search in Google Scholar

[80] Decarli, N., Guidi, F., Dardari, D., (2016). Passive UWB RFID for tag cocalization : Architectures and design. IEEE Sensors Journal, 16 (5), 1385-1397. 10.1109/JSEN.2015.2497373Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo