1. bookVolume 66 (2018): Edition 3 (September 2018)
Détails du magazine
Première parution
28 Mar 2009
4 fois par an
Accès libre

Natural colloid mobilization and leaching in wettable and water repellent soil under saturated condition

Publié en ligne: 14 Aug 2018
Volume & Edition: Volume 66 (2018) - Edition 3 (September 2018)
Pages: 271 - 278
Reçu: 08 Dec 2016
Accepté: 03 Oct 2017
Détails du magazine
Première parution
28 Mar 2009
4 fois par an

Amrhein, C., Mosher, P.A., Strong, J.E., 1993. Colloid-assisted transport of trace metals in roadside soils receiving deicing salts. Soil. Sci. Soc. Am. J., 57, 1212-1217.10.2136/sssaj1993.03615995005700050009xOuvrir le DOISearch in Google Scholar

Auset, M., Keller, A.A., 2004. Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour. Res., 40, W03503. DOI: 10.1029/2003WR002800.10.1029/2003WR002800Ouvrir le DOISearch in Google Scholar

Baumann, T., Niessner, N., 2006. Micromodel study on repartitioning phenomena of a strongly hydrophobic fluorophore at a colloid/1-octanol interface, Water Resour. Res., 42, W12S04.10.1029/2006WR004893Search in Google Scholar

Bachmann, J., Ellies, A., Hartge, K.H., 2000. Development and application of a new sessile drop contact angle method to assess soil water repellency. J. Hydrol., 231-232, 66-75.10.1016/S0022-1694(00)00184-0Search in Google Scholar

Bachmann, J., Deurer, M., Arye, G., 2007. Modeling water movement in heterogeneous water-repellent soil: 1. Development of a contact angle-dependent water-retention model. Vadose Zone J., 6, 436-445.10.2136/vzj2006.0060Search in Google Scholar

Bachmann, J., Krüger, J., Goebel, M.-O., Heinze, S., 2016. Occurrence and spatial pattern of water repellency in a beech forest subsoil. J. Hydrol. Hydromech., 64, 100-110.10.1515/johh-2016-0005Search in Google Scholar

Bradford, S.A., Torkzaban, S., 2008. Colloid transport and retention in unsaturated porous Media: A review of interface-, collector-, and pore-scale processes and models. Vadose Zone J., 7, 667-681.10.2136/vzj2007.0092Ouvrir le DOISearch in Google Scholar

Brown, J.N., Peake, B.M., 2003. Determination of colloidallyassociated polycyclic aromatic hydrocarbons (PAHs) in fresh water using C18 solid phase extraction disks. Anal. Chim. Acta., 486, 159-169.10.1016/S0003-2670(03)00472-0Search in Google Scholar

Carstens, J.F., Bachmann, J., Neuweiler, I., 2017. Effects of flow interruption on transport and retention of iron oxide colloids in quartz sand. Colloids and Surfaces A: Physicochem. Eng. Aspects., 520, 532-543.10.1016/j.colsurfa.2017.02.003Search in Google Scholar

Chen, G., Flury, M., 2005. Retention of mineral colloids in unsaturated media as related to their surface properties, Colloids Surf. A: Physicochem. Eng. Aspects., 256, 207-216.10.1016/j.colsurfa.2005.01.021Search in Google Scholar

Crist, J.T., McCarthy, J.F., Zevi, Y., Baveye, P., Throop, J.A., Steenhuis, T.S., 2004. Pore-scale visualization of colloid transport and retention in partly saturated porous media. Vadose Zone J., 3, 444-450.10.2136/vzj2004.0444Ouvrir le DOISearch in Google Scholar

Crow, S.E., Lajtha, K., Richard, D., Bowden, R.D., Yano, Y., Brant, J.B., Caldwell, B.A., Sulzman, E.W., 2009. Increased coniferous needle inputs accelerate decomposition of soil carbon in an old-growth forest. For Ecol Manage., 258, 2224-2232.10.1016/j.foreco.2009.01.014Search in Google Scholar

Deb, S.K., Shukla, M.K., 2011. A review of dissolved organic matter transport processes affecting soil and environmental quality. Journal of Environmental and Analytical Toxicology, 1, 106. DOI: 10.4172/2161-0525.1000106.10.4172/2161-0525.1000106Ouvrir le DOISearch in Google Scholar

Diehl, D., 2013. Soil water repellency: Dynamics of heterogeneous surfaces. Colloids and Surfaces A: Physicochem. Eng. Aspects, 432, 8-18.10.1016/j.colsurfa.2013.05.011Search in Google Scholar

Dilling, J., Kaiser, K., 2002. Estimation of the hydrophobic fraction of dissolved organic matter in water samples using UV photometry. Water Res., 36, 5037-5044.10.1016/S0043-1354(02)00365-2Ouvrir le DOISearch in Google Scholar

Deurer, M., Bachmann, J., 2007. Modelling water movement in heterogeneous water-repellent soil: 2: Numerical simulation. Vadose Zone J., 6, 446-457.10.2136/vzj2006.0061Ouvrir le DOISearch in Google Scholar

Dymov, A.A., Milanovskii, E.Y., Kholodov, V.A., 2015. Composition and hydrophobic properties of organic matter in the densimetric fractions of soils from the Subpolar Urals. Eurasian Soil Sci., 48, 1212-1221.10.1134/S1064229315110058Search in Google Scholar

Dymov, A.A., Gabov, D.N., Milanovskii, E.Y., 2017. 13CNMR, PAHs, WSOC and water repellence of fire-affected soils (Albic Podzols) in lichen pine forests, Russia. Environ.10.1007/s12665-017-6600-2Search in Google Scholar

Earth Sci., 76, 275. DOI: 10.1007/s12665-017-6600-2.10.1007/s12665-017-6600-2Ouvrir le DOISearch in Google Scholar

Egeberg, P.K., Alberts, J.J., 2002. Determination of hydrophobicity of NOM by RP-HPLC, and the effect of pH and ionic strength. Water Res., 36, 4997-5004.10.1016/S0043-1354(02)00228-2Ouvrir le DOISearch in Google Scholar

EPA (Environmental Protection Agency), 1993. Turbidity (Nephelometric). Method #180.1 Approved for NPDES (Editorial Revision 1974, 1978).Search in Google Scholar

Ferguson, G.S., Whiteside, G.M., 1992. Thermal reconstruction of the functionalized interface of polyethylene carboxylic acid and its derivatives. In: Schrader, M. E., Loeb, G. (Eds.): Modern Approaches to Wettability: Theory and Applications. Plenum Press, New York, pp. 143-177.10.1007/978-1-4899-1176-6_6Search in Google Scholar

Fishkis, O., Wachten, M., Hable, R., 2015. Assessment of soil water repellency as a function of soil moisture with mixed modelling. Eur. J. Soil Sci., 66, 910-920.10.1111/ejss.12283Search in Google Scholar

Flury, M., Qiu, H.X., 2008. Modeling colloid-facilitated contaminant transport in the vadose zone. Vadose Zone J., 7: 682-697.10.2136/vzj2007.0066Ouvrir le DOISearch in Google Scholar

Fröberg, M., Berggren, D., Bergkvist, B., Bryant, C., Knicker, H., 2003. Contributions of Oi, Oe and Oa horizons to dissolved organic matter in forest floor leachates. Geoderma, 113, 311-322.10.1016/S0016-7061(02)00367-1Search in Google Scholar

Ghernaout, D., 2014. The hydrophilic/hydrophobic ratio vs. dissolved organics removal by coagulation - A review. Journal of King Saud University - Science, 26, 169-180.10.1016/j.jksus.2013.09.005Search in Google Scholar

Goebel, M-O., Bachmann, J., Woche, S.K., Fischer, W.R., 2005. Soil wettability, aggregate stability, and the decomposition of soil organic matter. Geoderma, 128, 80-93.10.1016/j.geoderma.2004.12.016Search in Google Scholar

Goebel, M.-O., Bachmann, J., Reichstein, M., Janssens, I.A., Guggenberger, G., 2011. Soil water repellency and its implications for organic matter decomposition - is there a link to extreme climatic events? Glob. Change. Biol. 17, 2640-2656.10.1111/j.1365-2486.2011.02414.xOuvrir le DOISearch in Google Scholar

Goebel, M., Woche, S.K., Abraham, P.M.., Schaumann, G.E. Bachmann, J., 2013. Water repellency enhances the deposition of negatively charged hydrophilic colloids in a watersaturated sand matrix. Colloids and Surfaces A., 431, 150-160.10.1016/j.colsurfa.2013.04.038Search in Google Scholar

Guo, M., Chorover, J., 2003. Transport and fractionation of dissolved organic matter in soil columns. Soil Sci., 168, 2, 108-118.10.1097/00010694-200302000-00005Search in Google Scholar

Jarvis, N., Etana, A., Stagnitti, F., 2008. Water repellency, nearsaturated infiltration and preferential solute transport in a macroporous clay soil. Geoderma, 143, 223-230.10.1016/j.geoderma.2007.11.015Search in Google Scholar

Karathanasis, A.D., 1999. Subsurface migration of copper and zinc mediated by soil colloids. Soil Sci. Soc. Am. J., 63, 830-838.10.2136/sssaj1999.634830xOuvrir le DOISearch in Google Scholar

Keller, A.A., Auset, M., 2007. A review of visualization techniques of biocolloid transport processes at the pore scale under saturated and unsaturated conditions. Adv. Water Resour., 30, 6-7, 1392-1407.10.1016/j.advwatres.2006.05.013Ouvrir le DOISearch in Google Scholar

Keller, A.A., Sirivithayapakorn, S., 2004. Transport of colloids in unsaturated porous media: Explaining large-scale behavior based on pore-scale mechanisms. Water Resour Res., 40, W12403. DOI: 10.1029/2004WR003315.10.1029/2004WR003315Ouvrir le DOISearch in Google Scholar

Kirkham, M.B., 2005. Principles of Soil and Plant Water Relations. Elsevier Academic Press.Search in Google Scholar

Klitzke, S., Lang, F., 2007. A method for the determination of hydrophobicity of suspended soil colloids. Colloids and Surfaces A: Physicochem. Eng. Aspects., 303, 249-252.10.1016/j.colsurfa.2007.04.014Search in Google Scholar

Klute, A., Dirksen, C., 1986. Hydraulic conductivity and diffusivity: laboratory methods. In: Klute, A. (Ed.): Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. 2nd ed. ASA/SSSA Monograph 9(1), Madison, WI, pp.10.2136/sssabookser5.1.2edSearch in Google Scholar

687-732.Search in Google Scholar

Laegdsmand, M., de Jonge, L.W., Moldrup, P., 2005. Leaching of colloids and dissolved organic matter from packed with natural soil aggregates. Soil Sci., 170, 13-27.10.1097/00010694-200501000-00003Search in Google Scholar

Larsen, T., Christensen, T.H., Pfeffer, F.M., Enfield, C.G., 1992. Landfill leachate effects of sorption of organic micropollutants onto aquifer materials. J. Contam Hydrol., 9, 307-324.10.1016/0169-7722(92)90001-UOuvrir le DOISearch in Google Scholar

Lazouskaya, V., Jin, Y., 2008. Colloid retention at air-water interface in a capillary channel. Colloids and Surfaces A: Physicochem. Eng. Aspects, 325, 141-151.10.1016/j.colsurfa.2008.04.053Search in Google Scholar

Lindroos, A-J., Kitunen, K., Deromeb, J., Helmisaari, H.S., 2002. Changes in dissolved organic carbon during artificial recharge of groundwater in a forested esker in Southern Finland. Water Res., 36, 4951-4958.10.1016/S0043-1354(02)00226-9Ouvrir le DOISearch in Google Scholar

Mainwaring, K., Hallin, I.L., Douglas, P., Doerr, S.H., Morley, C.P., 2013. The role of naturally occurring organic compounds in causing soil water repellency. European Journal of Soil Science, 64, 667-680.10.1111/ejss.12078Ouvrir le DOISearch in Google Scholar

McCarthy, J.F., McKay, L.D., 2004. Colloid transport in the subsurface: past, present, and future challenges. Vadose Zone J., 3, 326-337.10.2136/vzj2004.0326Search in Google Scholar

McCarthy, J.F., Zachara, J.M., 1989. Subsurface transport of contaminants. Environ. Sci. Technol., 23, 496-502.10.1021/es00063a001Search in Google Scholar

Motoshita, M., Komatsu, T., Moldrup, P., de Jonge, L.W., Ozaki, N., Fukushima, T., 2003. Soil constituent facilitated transport of phosphorus from a high-P surface soil. Soils Found., 43, 105-114.10.3208/sandf.43.3_105Ouvrir le DOISearch in Google Scholar

Nanny, M.A., Ratasuk, N., 2002. Characterization and comparison of hydrophobic neutral and hydrophobic acid dissolved organic carbon isolated from three municipal landfill leachates. Water Res., 36, 1572-1584.10.1016/S0043-1354(01)00359-1Search in Google Scholar

Ochiai, N., Kraft, E.L., Selker, J.S., 2006. Methods for colloid transport visualization in pore networks. Water Resour. Res., 42, W12S06.10.1029/2006WR004961Search in Google Scholar

Philip, J.R., 1957. The theory of infiltration: 1. The infiltration equation and its solution. Soil Sci., 83, 345-357.10.1097/00010694-195705000-00002Search in Google Scholar

Raats, P.A.C., 1973. Unstable wetting fronts in uniform and non-uniform soils. Soil Sci. Soc. Am. Proc., 37, 681-685.10.2136/sssaj1973.03615995003700050017xSearch in Google Scholar

Reszkowska, A., Bachmann, J., Lamparter, A., Diamantopoulos, E., Durner, W., 2014.The effect of temperature-induced soil water repellency on transient capillary pressure-water content relations during capillary rise. Eur. J. Soil Sci., 65, 369-376.10.1111/ejss.12139Search in Google Scholar

Ritsema, C.J., Dekker, L.W., 1994. How water moves in water repellent sandy soil. 2. Dynamics of fingered flow. Water Resour. Res., 30, 2519-2531.10.1029/94WR00750Ouvrir le DOISearch in Google Scholar

Ritsema, C.J., Dekker, L.W., 1998. Modeling and field evidence of finger formation and finger recurrence in a water repellent sandy soil. Water Resour. Res., 34, 555-567.10.1029/97WR02407Ouvrir le DOISearch in Google Scholar

SAS Institute, 2004. SAS User’s Guide: Statistics. Ver. 9. SAS Institute Inc., Cary, N.C.Search in Google Scholar

Sen, T.K., Khilar, K.C., 2006. Review on subsurface colloids and colloid-associated contaminant transport in saturated porous media. Adv. Colloid Interface Sci., 119, 71-96.10.1016/j.cis.2005.09.001Search in Google Scholar

Sepehrnia, N., Mahboubi, A.A., Mosaddeghi, M.R., SafariSearch in Google Scholar

Sinejani, A.A., Khodakaramian, G., 2014. Escherichia coli transport through intact gypsiferous and calcareous soils during saturated and unsaturated flows. Geoderma, 217-218, 83-89.10.1016/j.geoderma.2013.11.004Search in Google Scholar

Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, L., 2016. Extent and persistence of water repellency in two Iranian soils. Biologia, 71, 10, 1137-1143.10.1515/biolog-2016-0135Search in Google Scholar

Sepehrnia, N., Hajabbasi, M.A., Afyuni, M., Lichner, L., 2017. Soil water repellency changes with depth and relationship to physical properties within wettable and repellent soil profiles. J. Hydrol. Hydromech., 65, 2017, 1, 99-104.10.1515/johh-2016-0055Search in Google Scholar

Tillman, R.W., Scotter, D.R., Wallis, M.G., Clothier, B.E., 1989. Water-repellency and its measurement by using intrinsic sorptivity. Aust. J. Soil Res., 27, 637-644.10.1071/SR9890637Ouvrir le DOISearch in Google Scholar

Tschapek, M., Wasowki, C., 1976. Adsorption of aliphatic alcohols by soil minerals as a method of evaluating their hydrophobic sites. Soil Sci., 27, 175-182.10.1111/j.1365-2389.1976.tb01988.xOuvrir le DOISearch in Google Scholar

Totsche, K.U., Jann, S., Kogel-Knabner, I., 2006. Single eventdriven export of polycyclic aromatic hydrocarbons and suspended matter from coal tar-contaminated soil. Vadose Zone J., 6, 233-243.10.2136/vzj2006.0083Search in Google Scholar

Tufenkji, N., Miller, G.F., Ryan, J.N., Harvey, R.W., Elimelech, M., 2004. Transport of Cryptosporidium oocysts in porous media: Role of straining and physicochemical alteration. Environ. Sci. Technol., 38, 5932-5938.10.1021/es049789uOuvrir le DOISearch in Google Scholar

Urbanek, E., Hallett, P., Feeney, D., Horn, R., 2007. Water repellency and distribution of hydrophilic and hydrophobic compounds in soil aggregates from different tillage systems. Geoderma, 140, 147-155.10.1016/j.geoderma.2007.04.001Search in Google Scholar

Van Oss, C.J., 1995. Hydrophobicity of biosurfaces-origin, quantitative determination and interaction energies. Biointerfaces., 5, 91-110. Wandruszka, R., Ragle, C., Engebretson, R., 1997. The role of selected cations in the formation of pseudomicelles in aqueous humic acid. Talanta, 44, 805-809.10.1016/S0039-9140(96)02116-9Search in Google Scholar

Wang, L., Yoon, R.H., 2005. Hydrophobic forces in thin aqueous films and their role in film thinning. Colloids and Surfaces A - Physicochem. Eng. Aspects, 263, 267-274.10.1016/j.colsurfa.2004.12.045Search in Google Scholar

Woche, S.K., Goebel, M.-O., Horton, R., Van Der Ploeg., Bachmann, J., 2005. Contact angle of soil as affected by depth, texture, and land management. Eur. J. Soil Sci, 56, 239-251.10.1111/j.1365-2389.2004.00664.xOuvrir le DOISearch in Google Scholar

Woche, S.K., Goebel, M.-O., Mikutta, R., Schurig, Ch., Kaestner, M., Guggenberger, G., Bachmann, J., 2017. Soil wettability can be explained by the chemical composition of particle interfaces - An XPS study. Sci. Rep., 7, 42877. DOI: 10.1038/srep42877.10.1038/srep42877531440628211469Search in Google Scholar

Wood, C.M., Al-Reasia, H.A., Smith, D.S., 2011. The two faces of DOC. Aquat. Toxicol., 105S, 3-8.10.1016/j.aquatox.2011.03.00722099339Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo