1. bookVolume 66 (2018): Edition 3 (September 2018)
Détails du magazine
Première parution
28 Mar 2009
4 fois par an
Accès libre

Improving the positional accuracy of drainage networks extracted from Global Digital Elevation Models using OpenstreetMap data

Publié en ligne: 14 Aug 2018
Volume & Edition: Volume 66 (2018) - Edition 3 (September 2018)
Pages: 285 - 294
Reçu: 04 Sep 2017
Accepté: 30 Nov 2017
Détails du magazine
Première parution
28 Mar 2009
4 fois par an

Al-Bakri, M., Fairbairn, D., 2010. Assessing the accuracy of ‘Crowdsourced’ data and its integration with official spatial data sets. In: Proc. Symp. Accuracy 2010. Leicester, UK, pp. 317-320.Search in Google Scholar

Arun, P.S., Jana, R., Nathawat, M.S., 2005. A rule base physiographic characterization of drought prone watershed applying remote sensing and GIS. Journal of the Indian Society of Remote Sensing, 32, 189-201.10.1007/BF02990035Search in Google Scholar

Bossard, M., Feranec, J. and Otahel, J., 2000. CORINE Land Cover Technical Guide: Addendum 2000. European Environment Agency, Copenhagen.Search in Google Scholar

Brovelli, M.A., Minghini, M., Molinari, E., Zamboni, G., 2016. Positional accuracy assessment of the OpenStreetMap buildings layer through automatic homologous pairs detection: The method and a case study. The International Archives of the Photogrammetry. In: Proc. XXIII ISPRS CongressRemote Sensing and Spatial Information Sciences, vol. XLI-B2, , 12-19 July, Prague, Czech Republic.10.5194/isprsarchives-XLI-B2-615-2016Search in Google Scholar

Cook, A.J., Murray, T., Luckman, A., Vaughan, D.G., Barrand, N.E., 2012. A new 100-m digital elevation model of the Antarctic Peninsula derived from ASTER Global DEM: Methods and accuracy assessment. Earth System Science Data, 4, 129-142.10.5194/essd-4-129-2012Search in Google Scholar

Das, S., Patel, P.P., Sengupta, S., 2016. Evaluation of Different Digital Elevation Models for Analysing Drainage Morphometric Parameters in a Mountainous Terrain: A Case Study of the Supin- Upper Tons Basin, Indian Himalayas. Springer Plus, 38 p. DOI: 10.1186/s40064-016-3207-0.10.1186/s40064-016-3207-0Ouvrir le DOISearch in Google Scholar

Ebenezer, S.S., 2015. GIS Based Automated Drainage Extraction for the Analysis of Basin Morphometry in Vaniyar Sub-Basin, South India. International Association of Scientific Innovation and Research (IASIR), pp. 31-34.Search in Google Scholar

Eckert, S., Kellenberger, T., Itten, K., 2005. Accuracy assessment of automatically derived Digital Elevation Models from ASTER data in mountainous terrain. International Journal of Remote Sensing, 9, 1943-1957.10.1080/0143116042000298306Ouvrir le DOISearch in Google Scholar

Elkhrachy, I., 2017. Vertical accuracy assessment for SRTM and ASTER Digital Elevation Models: A case study of Najran City, Saudi Arabia. Ain Shams Eng J. http://dx.doi.org/10.1016/j.asej.2017. le DOISearch in Google Scholar

Fisher, P., 1998. Improved modelling of elevation error with geostatistics. GeoInformatica, 2, 215-233.10.1023/A:1009717704255Ouvrir le DOISearch in Google Scholar

Florinsky, I.V., Kuryakova, G.A., 2000. Determination of grid size for digital terrain modelling in landscape investigations - Exemplified by soil moisture distribution at a micro-scale. International Journal of Geographical Information Science, 8, 815-832.10.1080/136588100750022804Search in Google Scholar

Fonte, C.C., Minghini, M., Antoniou, V., See, L., Patriarca, J., Brovelli, M.A., Milcinski, G., 2016. An Automated Methodology for Converting OSM Data into a Land Use/Cover Map. In: Proceedings of the 6th International Conference on Cartography & GIS, Albena (Bulgaria), June 13-17, 2016, Bulgarian Cartographic Association, 1, pp. 462-473. ISSN 1314-0604.Search in Google Scholar

Forkuor, G., Maathuis, B., 2012. Comparison of SRTM and ASTER Derived Digital Elevation models over two regions in10.5772/28951Search in Google Scholar

Ghana - Implications for hydrological and environmental modelling. In: Piacentini T. (Ed.): Studies on environmental and applied geomorphology. InTech, pp. 219-240. Freeman, T.G., 1991. Calculating catchment area with divergent flow based on a regular grid. Computers and Geosciences, 17, 413-422.10.1016/0098-3004(91)90048-ISearch in Google Scholar

Goodchild, M.F., 2007. Citizens as sensors: the world of volunteered geography. GeoJournal, 4, 211-221.10.1007/s10708-007-9111-ySearch in Google Scholar

Greve, C. (Ed.), 1996. Digital Photogrammetry - Addendum to the Manual of Photogrammetry. Publication of the American Society of Photogrammetry and Remote Sensing.Search in Google Scholar

Haklay, M., 2010. How good is the volunteered geographic information? A comparative study of OpenStreetMap and Ordnance Survey datasets. Environment and Planning B: Planning and Design, 37, 682-703.10.1068/b35097Search in Google Scholar

Hanssen, R.F., 2001. Radar Interferometry: Data Interpretation and Error Analysis. Kluwer Academic Publishers, Dordrecht.10.1007/0-306-47633-9Search in Google Scholar

Heymann, Y., 1994. Commission of the European Communities, Directorate-General for Environment, N.S., C.P. CORINE Land Cover: Technical Guide. European Guide. European Commission. Directorate-General. Environment, Nuclear Safety and Civil Protection, Luxemburg.Search in Google Scholar

Holmes, K.W., Chadwick, O.A., Kyriakidis, P.C., 2000. Errors in USGS 30-meter Digital Elevation Model and its impact on terrain modelling. Journal of Hydrology, 233, 154-173.10.1016/S0022-1694(00)00229-8Search in Google Scholar

Hutchinson, M.F., Xu, T., Stein, J.A., 2011. Recent progress in the ANNUDEM elevation gridding procedure. In: Hengel, T., Evans, I.S., Wilson, J.P., Gould, M. (Eds.): Geomorphometry 2011, pp. 19-22.Search in Google Scholar

Jenson, S.K., Domingue, J.O., 1988. Extracting topographic structure from digital elevation data for Geographic Information System analysis. Photogrammetry Engineering and Remote Sensing, 54, 1593-1600.Search in Google Scholar

Kääb, A., 2005. Combination of SRTM3 and repeat ASTER data for deriving alpine glacier flow velocities in the Himalaya. Remote Sensing Environment, 4, 463-474.10.1016/j.rse.2004.11.003Search in Google Scholar

Kenward, T., Lettenmaier, D.P., Wood, E.F., Fielding, E., 2000. Effects of Digital Elevation Model accuracy on hydrologic predictions. Remote Sensing and Environment, 3, 432-444.10.1016/S0034-4257(00)00136-XSearch in Google Scholar

Kyriakidis, P.C., Shortridge, A.M., Goodchild, M.F., 1999. Geostatistics for conflation and accuracy assessment of Digital Elevation Models. International Journal of Geographical Information Science, 7, 677-707.10.1080/136588199241067Ouvrir le DOISearch in Google Scholar

Lacroix, M.P., Martz, L.W., Kite, G.W., Garbrecht, J., 2002. Using digital terrain analysis modelling techniques for the parametrization of a hydrologic model. Environmental Modelling Software, 17, 127-136.10.1016/S1364-8152(01)00042-1Search in Google Scholar

Lin, W.T., Chou, W.C., Lin, C.Y., Huang, P.H., Tsai, J.S., 2005. Automated suitable drainage network extraction from Digital Elevation Models in Taiwan’s upstream watersheds. Hydrological Processes, 20, 2, 289-306. DOI: 10.1002/hyp.5911.10.1002/hyp.5911Ouvrir le DOISearch in Google Scholar

Lin, W.T., Chou, W.C., Lin, C.Y., Huang, P.H., Tsai, J.S., 2008. WinBasin: using improved algorithms and the GIS technic for automated watershed modelling analysis from Digital Elevation Models. International Journal of Geographical Information Science, 22, 47-69.10.1080/13658810701300121Search in Google Scholar

Liu, T., Yan, H., Zhai, L., 2015. Extract relevant features from DEM groundwater potential mapping. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-7/W4, International Workshop on Image and Data Fusion, USA, pp. 113-119.10.5194/isprsarchives-XL-7-W4-113-2015Search in Google Scholar

Mark, D.M., 1984. Automated detection of drainage networks from Digital Elevation Models. Cartographica, 21, 168-178.10.3138/10LM-4435-6310-251RSearch in Google Scholar

Martz, L.W., Garbrech, J., 1998. The treatment of flat areas and depressions in automated drainage analysis of Raster Digital Elevation Models. Hydrological Processes, 12, 843-855.10.1002/(SICI)1099-1085(199805)12:6<843::AID-HYP658>3.0.CO;2-ROuvrir le DOISearch in Google Scholar

Massonet, D., Feigl, K.L., 1998. Radar interferometry and its applications to changes in the Earth’s surface. Reviews of Geophysics, 36, 441-500.10.1029/97RG03139Ouvrir le DOISearch in Google Scholar

Monteiro, E.V., Fonte, C.C., de Lima, J.L.M.P., 2015. Assessing positional accuracy of drainage networks extracted from ASTER, SRTM and OpenStreetMap. In: Proceedings of AGILE 2015, Lisbon, Portugal, June 9-12, 5 p.Search in Google Scholar

Mooney, P., Corcoran, P., Winstanley, A.C., 2010. Towards quality metrics for OpenStreetMap. In: SIGSPATIAL GIS’10, pp. 514-517.10.1145/1869790.1869875Search in Google Scholar

Mukherjee, S., Joshi, P.K., Mukherjee, S., Gosh, A., Garg, R.D., Mukhopadhyay, A., 2013. Evaluation of vertical accuracy of open source Digital Elevation Model (DEM). International Journal of Applied Earth Observation and Geoinformation, 21, 205-217.10.1016/j.jag.2012.09.004Ouvrir le DOISearch in Google Scholar

Mukul, M., Srivastava, V., Jade, S., Mukul, M., 2017. Uncertainties in the Shuttle Radar Topography Mission (SRTM) heights: Insights from the Indian Himalaya and Peninsula. Scientific Reports, DOI: 10.1038/srep41672, www.nature.com/scientificreports, 10 p.10.1038/srep41672,www.nature.com/scientificreports,10pOuvrir le DOISearch in Google Scholar

Neis, P., Zipf, A., 2012. Analysing the contributor activity of a volunteered geographic information project - The case of OpenStreetMap. ISPRS International Journal of Geo- Information, 1, 146-165.10.3390/ijgi1020146Search in Google Scholar

Neis, P., Zielstra, D., 2014. Recent developments and future trends in volunteered geographic information research: The case of OpenStreetMap. Future Internet 2014, 1, 76-106. DOI: 10.3390/fi6010076.10.3390/fi6010076Ouvrir le DOISearch in Google Scholar

O’Callaghan, J.F., Mark, D.M., 1984. The extraction of drainage networks from Digital Elevation Data. Computer Vision, Graphics, and Image Processing, 28, 323-344.10.1016/S0734-189X(84)80011-0Search in Google Scholar

Petrasova, A., Mitasova, H., Petras, V., Jeziorka, J., 2017. Fusion of high-resolution DEMs for water flow modelling. Open Geospatial Data, Software and Standards. DOI: 10.1186/s40965- 017-0019-2.10.1186/s40965-017-0019-2Ouvrir le DOISearch in Google Scholar

Planchon, O., Darboux, F., 2002. A fast, simple and versatile algorithm to fill the depressions of Digital Elevation Models. Catena, 2, 159-176.10.1016/S0341-8162(01)00164-3Ouvrir le DOISearch in Google Scholar

Rodriguez, E., Morris, C., Belz, J., 2006. A global assessment of SRTM performance. Photogrammetric Engineering and Remote Sensing, 72, 249-260.10.14358/PERS.72.3.249Search in Google Scholar

Roth, A., Knopfle, W., Strunz, G., Lehner, M., Reinartz, P., 2002. Towards a global elevation product: Combination of multisource Digital Elevation Models. In: Proceedings of Symposium on Geospatial Theory, Processing and Applications, Ottawa 2002, 5 p.Search in Google Scholar

Schellekens, J., Brolsma, R.J., Dahm, R.J., Donchyts, G.V., Winesemius, H.C., 2014. Rapid setup of hydrological and hydraulic models using OpenStreetMap and the SRTM derived Digital Elevation Model. Environmental Modelling & Software, 61, 98-105.10.1016/j.envsoft.2014.07.006Search in Google Scholar

Sefercik, U.G., 2012. Performance estimation of ASTER Global DEM depending upon the terrain inclination. Journal of Indian Society of Remote Sensing, 4, 565-576.10.1007/s12524-012-0202-ySearch in Google Scholar

Strahler, A.N., 1964. Quantitative geomorphology of drainage basins and channel networks. In: Chow, V.T. (Ed.): Handbook of Applied Hydrology, pp. 4-39.Search in Google Scholar

Tarboton, D.G., Bras, R.L., Rodriguez-Iturbe, I., 1991. On the extraction of channel networks from Digital Elevation Data. Hydrologic Processes, 5, 81-100.10.1002/hyp.3360050107Search in Google Scholar

Tarboton, D.G., 1997. A new method for the determination of flow directions and upslope areas in Grid Digital Elevation Models. Water Resources, 2, 309-319.10.1029/96WR03137Ouvrir le DOISearch in Google Scholar

Toutin, T., 2002. Impact of terrain slope and aspect on radargrammetric DEM accuracy. ISPRS Journal of Photogrammetry and Remote Sensing, 57, 228-240.10.1016/S0924-2716(02)00123-5Ouvrir le DOISearch in Google Scholar

Varga, M., Bašić, T., 2013. Quality assessment and comparison of Global Digital Elevation Models on the territory of Republic of Croatia. Cartography and Geoinformation, 20, 4-17.Search in Google Scholar

Vieux, B.E., 1993. DEM aggregation and smoothing effects on surface runoff modelling. Journal of Computing in Civil Engineering, 3, 310-338.10.1061/(ASCE)0887-3801(1993)7:3(310)Ouvrir le DOISearch in Google Scholar

Weydahl, D.J., Sagstuen, J., Dick, O.B., Ronning, H., 2007. SRTM DEM accuracy over vegetated areas in Norway. International Journal of Remote Sensing, 16, 3513-3527.10.1080/01431160600993447Ouvrir le DOISearch in Google Scholar

Yadav, S., Indu, J., 2016. Estimation of vertical accuracy of Digital Elevation Models over complex of Indian Subcontinent. IGARSS, 978-1-5090-3332-4/16, IEEE, 6036-6039.Search in Google Scholar

Zhang, W., Montgomery, D.R., 1994. Digital Elevation Model grid size, landscape representation, and hydrologic simulation. Water Resources Research, 30, 1019-1028.10.1029/93WR03553Ouvrir le DOISearch in Google Scholar

Zielstra, D., Zipf, A., 2010. OpenStreetMap quality research in Germany. In: Sixth International Conference on Geographic Information Science, pp. 15-17.Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo