1. bookVolume 8 (2015): Edition 1 (June 2015)
Détails du magazine
License
Format
Magazine
eISSN
1313-9053
Première parution
08 Sep 2014
Périodicité
2 fois par an
Langues
Anglais
Accès libre

Plasma Homocysteine Level And C677T Polymorphism In MTHFR Gene In Patients With Acute Coronary Syndrome

Publié en ligne: 10 Dec 2015
Volume & Edition: Volume 8 (2015) - Edition 1 (June 2015)
Pages: 46 - 51
Reçu: 02 Feb 2015
Accepté: 18 May 2015
Détails du magazine
License
Format
Magazine
eISSN
1313-9053
Première parution
08 Sep 2014
Périodicité
2 fois par an
Langues
Anglais

1. World Health Organization [Internet]. Geneva: Global status report on noncommunicable diseases 2010. [updated 2011 Apr; cited 2014 Dec 9]. Available from: http://www.who.int/nmh/publications/ncd_report2010/en/.Search in Google Scholar

2. Gorbas IM, Barna OM, Sakalosh VY, Bakumenko MA. [Estimated prevalence and control of risk factors for cardiovascular disease in the population and physicians]. Liky Ukrainy. 2010;(1):24-6. Ukrainian.Search in Google Scholar

3. Gaydaev YO, Kornatchkyi VM. [Health problems and directions of its improvement in modern conditions]. Ukr. Kardiol. J. 2007;(5):7. Ukrainian.Search in Google Scholar

4. Mathers CD, Loncar D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med, 2006,3(11):e 442.10.1371/journal.pmed.0030442166460117132052Search in Google Scholar

5. Spagnoli LG, Bonnano E., Sangiorgi G, Mauriello A. Role of inflammation in atherosclerosis. J Nucl Med. 200748(11):1800-15.10.2967/jnumed.107.03866117942804Search in Google Scholar

6. Libby P. Inflammatory mechanisms: the molecular basis of inflammation and disease. Nutr rev. 2007;65(12 Pt 2):140-6.10.1301/nr.2007.dec.S140-S146Search in Google Scholar

7. Shan P.K. Molecular mechanisms of plaque instability. Curr Opin Lipidol. 2007;18(5):492-9.10.1097/MOL.0b013e3282efa32617885418Search in Google Scholar

8. Sumagin R, Sarelius I. A role for ICAM−1 in maintenance of leucocite−endothelial cell rolling interactions in inflammed arteries. Am J Physiol Heart Circ Physiol. 2007;293(5):H2786-98.10.1152/ajpheart.00720.200717704289Search in Google Scholar

9. Pereira IA, Borba EF. The role of inflammation, humoral and cell mediated autoimmunity in the pathogenesis of atherosclerosis. Swiss Med Wkly. 2008;138(37-38):534-9.Search in Google Scholar

10. Stancu CS, Toma L, Sima AV. Dual role of lipoproteins in endothelial cell dysfunction in atherosclerosis. Cell Tissue Res. 2012;349(2):433-46.10.1007/s00441-012-1437-122592627Search in Google Scholar

11. Lusis AJ. Atherosclerosis. Nature. 2000;407:233-41.10.1038/35025203282622211001066Search in Google Scholar

12. Etsuo N. Do free radicals play causal role in atherosclerosis? Low density lipoprotein oxidation and vitamin E revisited. J Clin Biochem Nutr. 2011;48(1):3-7.Search in Google Scholar

13. Griendling KK, Alexander RW. Oxidative stress and cardiovascular disease. Circulation. 1997;96(10): 3264-5.Search in Google Scholar

14. Watson C, Nicholas J. ALP. Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci. 2008;114:509-31.10.1042/CS2007029818336368Search in Google Scholar

15. Jackson LA, Campbell LA, Schmidt RA, Kuo CC, Cappuccio AL, Lee MJ, et al. Specificity of detection of Chlamydia pneumoniae in cardiovascular atheroma: evaluation of the innocent bystander hypothesis. Am J Pathol. 1997;150(5):1785-90.Search in Google Scholar

16. McCully KS. Vascular pathology of homocysteinemia: implications for the pathogenesis of atherosclerosis. Am J Pathol. 1969;56(1):111-28.Search in Google Scholar

17. McDowell IF, Lang D. Homocysteine and endothelial dysfunction: a link with cardiovascular disease. J Nutr. 2000;130(2S Suppl):369S-72S.10.1093/jn/130.2.369S10721909Search in Google Scholar

18. Austin RC, Lentz SR, Werstuck GH. Role of hyperhomocysteinemia in endothelial dysfunction and atherothrombotic disease. Cell Death Differ. 2004;11 Suppl 1:S56-64.10.1038/sj.cdd.440145115243582Search in Google Scholar

19. AbdulleAM, Pathan JY, Moussa N, Gariballa S. Association between homocysteine and endothelial dysfunction markers in stroke disease. Nutr Neurosci. 2010;13(1):2-6.10.1179/147683010X12611460763562Search in Google Scholar

20. Verhoef P, Stampfer MJ. Prospective studies of homocysteine and cardiovascular disease. Nutr Rev. 1995;53910):283-8.10.1111/j.1753-4887.1995.tb01478.xSearch in Google Scholar

21. Stampfer M, Malinow M. Can lowering homocysteine levels reduce cardiovascular risk? N Engl J Med. 1995;33295):328-9.10.1056/NEJM199502023320511Search in Google Scholar

22. Graham M, Daly L, Refsum H, Robinson K, Brattström LE, Ueland PM, et al. Plasma homocysteine as a risk factor for vascular disease: the European concerted action project. JAMA. 1997;277(22):1775-81.10.1001/jama.1997.03540460039030Search in Google Scholar

23. Mayer E, Jacobsen D, Robinson K. Homocysteine and coronary atherosclerosis. J Am Coll Cardiol. 1996;27(3):517-27.10.1016/0735-1097(95)00508-0Search in Google Scholar

24. Hankey GJ, Eikelboom JW. Homocysteine and vascular disease. Lancet. 1999;354(9176):407-13.10.1016/S0140-6736(98)11058-9Search in Google Scholar

25. Burtina IY. [Effect of the composite preparation Cardonat on plasma homocysteine level in patients with coronary artery disease]. Ukrain Med. Chasopis. 2005;1(45): 45-8. Russian.Search in Google Scholar

26. Blacher J, Benetos A, Kirzin J, Malmejac A, Guize L, Safar ME. Relation of plasma homocysteine to cerebrovascular mortality in a French population. Am J Cardiol. 2002;90(6):591-5.10.1016/S0002-9149(02)02561-4Search in Google Scholar

27. Ciaccio M, Bivona G, Bellia C. Therapeutical approach to plasma homocysteine and cardiovascular risk reduction. Ther Clin Risk Manag. 2008;4(1):219-24.10.2147/TCRM.S1807250365718728711Search in Google Scholar

28. Trabetti E. Homocysteine, MTHFR gene polymorphisms, and cardio-cerebrovascular risk. J Appl Genet. 2008;49(3):267-82.10.1007/BF0319562418670064Search in Google Scholar

29. Bjelland I, Tell GS, Vollset SE, Refsum H, Ueland PM. Folate, vitamin B12, homocysteine, and the MTHFR 677C->T polymorphism in anxiety and depression: the Hordaland Homocysteine Study. Arch Gen Psychiatry. 2003;60(6):618-26.10.1001/archpsyc.60.6.61812796225Search in Google Scholar

30. Bailey LB, Gregory JF 3rd. Polymorphisms of methylenetetrahydrofolate reductase and other enzymes: metabolic significance, risks and impact on folate requirement. J Nutr. 1999;129(5):919-22.10.1093/jn/129.5.91910222379Search in Google Scholar

31. Martin YN, Salavaggione OE, Eckloff BW, Wieben ED, Schaid DJ, Weinshilboum RM. Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenetics and Genomics. 2006;16(4):265-77.10.1097/01.fpc.0000194423.20393.0816538173Search in Google Scholar

32. Stanger O, Herrmann W, Pietrzik K, Fowler B, Geisel J, Dierkes J, et al. Consensus paper on the rational clinical use of homocysteine, folic acid and B-vitamins incardiovascular and thrombotic diseases: guidelines and recommendations. Clin Chem Lab Med. 2003;41:1392-403.10.1515/CCLM.2003.21414656016Search in Google Scholar

33. Nygård O, Nordrehaug JE, Refsum H, Ueland PM, Farstad M, Vollset SE. Plasma homocysteine levels and mortality in patients with coronary artery disease. N Engl J Med. 1997;337(4):230-36.10.1056/NEJM1997072433704039227928Search in Google Scholar

34. Oudi ME, Aouni Z, Mazigh C, Khochkar R, Gazoueni E, Haouela H, et al. Homocysteine and markers of inflammation in acute coronary syndrome. Exp Clin Cardiol. 2010;15(2):e25-28.Search in Google Scholar

35. Haynes WG. Hyperhomocysteinemia, vascular function and atherosclerosis: effects of vitamins. Cardiovasc Drug Ther. 2002;16(5):391-9.10.1023/A:1022130217463Search in Google Scholar

36. Keijzer MB, den Heijer M, Blom HJ, Bos GM, Willems HP, Gerrits WB, et al. Interaction between hyperhomocysteinemia, mutated methylenetetrahydrofolate-reductase (MTHFR) and inherited thrombophilic factors in venous thromboembolism. Thromb Haemost. 2002;88(5):723-8.10.1055/s-0037-1613292Search in Google Scholar

37. Den Heijer M, Lewington S, Clarke R. Homocysteine, MTHFR and risk of venous thrombosis: a meta-analysis of published epidemiological studies. J Thromb Haemost. 2005;3(2):292-9.10.1111/j.1538-7836.2005.01141.x15670035Search in Google Scholar

38. Frederiksen J, Juul K, Grande P, Jensen GB, Schroeder TV, Tybjaerg-Hansen A, et al. Methylenetetrahydrofolate reductase polymorphism (C677T), hyperhomocysteinemia, and risk of ischemic cardiovascular disease and venous thromboembolism: prospective and case-control studies from the Copenhagen City Heart Study. Blood. 2004;104:3046-51.10.1182/blood-2004-03-089715226189Search in Google Scholar

39. Brattström L, Wilcken DE, Ohrvik J, Brudin L. Common methylenetetrahydrofolate reductase gene mutation leads to hyperhomocysteinemia but not to vascular disease: the result of a meta-analysis. Circulation. 1998;98(23):2520-6.10.1161/01.CIR.98.23.25209843457Search in Google Scholar

40. Martin YN, Salavaggione OE, Eckloff BW, Wieben ED, Schaid DJ, Weinshilboum RM. Human methylenetetrahydrofolate reductase pharmacogenomics: gene resequencing and functional genomics. Pharmacogenet Genomics. 2006;16:265-77.10.1097/01.fpc.0000194423.20393.08Search in Google Scholar

41. Xu H, Liu C, Wang Q. Plaque image characteristics, hyperhomocysteinemia, and gene polymorphism of homocysteine metabolism-related enzyme (MTHFR C677T) in acute coronary syndrome. Cell Biochem Biophys. 2013;66(2): P. 403-7.10.1007/s12013-012-9483-623314883Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo