1. bookVolume 4 (2014): Edition 3 (July 2014)
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

A Data Mining Approach To Improve Military Demand Forecasting1

Publié en ligne: 01 Mar 2015
Volume & Edition: Volume 4 (2014) - Edition 3 (July 2014)
Pages: 205 - 214
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais

[1] R. Thiagarajan, M. Rahman, G. Calbert, and D. Gossink, “Improving military demand forecasting using sequence rules,” in 6th Asian Conference on Intelligent Information and Database Systems (ACIIDS), pp. 475–484, 2014.10.1007/978-3-319-05458-2_49Search in Google Scholar

[2] S. Benjaafar, W. L. Cooper, and S. Mardan, “Production-inventory systems with imperfect advance demand information and updating,” Naval Research Logistics (NRL), vol. 58, no. 2, pp. 88–106, 2011.10.1002/nav.20443Search in Google Scholar

[3] F. Karaesmen, “Value of advance demand information in production and inventory systems with shared resources,” in Handbook of Stochastic Models and Analysis of Manufacturing System Operations, vol. 192, pp. 139–165, 2013.10.1007/978-1-4614-6777-9_5Search in Google Scholar

[4] R. Thiagarajan, M. A. Mekhtiev, G. Calbert, N. Jeremic, and D. Gossink, “Using military operational planning system data to drive reserve stocking decisions,” in 29th IEEE International Conference on Data Engineering (ICDE) Workshops, pp. 153–162, 2013.10.1109/ICDEW.2013.6547445Search in Google Scholar

[5] E. Gardner, “Exponential smoothing: The state of the art Part II,” International Journal of Forecasting, vol. 22, no. 4, pp. 637–666, 2006.10.1016/j.ijforecast.2006.03.005Search in Google Scholar

[6] G. Box, G. Jenkins, and G. Reinsel, Time Series Analysis: Forecasting and Control. 2008.10.1002/9781118619193Search in Google Scholar

[7] M. Downing, M. Chipulu, U. Ojiako, and D. Kaparis, “Forecasting in airforce supply chains,” International Journal of Logistics Management, vol. 22, no. 1, pp. 127–144, 2011.10.1108/09574091111127589Search in Google Scholar

[8] R. Agrawal, T. Imieli´nski, and A. Swami, “Mining association rules between sets of items in large databases,” SIGMOD Rec., vol. 22, no. 2, pp. 207–216, 1993.10.1145/170036.170072Search in Google Scholar

[9] H. Xiong, W. Zhou, M. Brodie, and S. Ma, “Top-k correlation computation,” INFORMS Journal on Computing, vol. 20, no. 4, pp. 539–552, 2008.10.1287/ijoc.1080.0265Search in Google Scholar

[10] P. Fournier-Viger and V. S. Tseng, “TNS: mining top-k non-redundant sequential rules,” in ACM Symposium on Applied Computing (SAC), pp. 164–166, 2013.10.1145/2480362.2480395Search in Google Scholar

[11] L.Wilkinson, “Tests of significance in stepwise regression,” Psychological Bulletin, vol. 86, no. 1, pp. 168–174, 1979.10.1037/0033-2909.86.1.168Search in Google Scholar

[12] R. H. Myers, Classical and modern regression with applications, vol. 2. 1990.Search in Google Scholar

[13] A. V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing. Prentice–Hall, 1989.Search in Google Scholar

[14] P. Fournier-Viger, A. Gomariz, A. Soltani, and T. Gueniche, “SPMF: Open-Source Data Mining Platform - http://www.philippe-fournier-viger.com/spmf/,” 2013.Search in Google Scholar

[15] A. Zeileis, dynlm: Dynamic Linear Regression, 2013. R package version 0.3-2.Search in Google Scholar

[16] R. J. Hyndman, G. Athanasopoulos, S. Razbash, D. Schmidt, Z. Zhou, Y. Khan, and C. Bergmeir, forecast: Forecasting functions for time series and linear models, 2013. R package version 4.06.Search in Google Scholar

[17] C. J. Willmott, “On the validation of models,” Physical Geography, vol. 2, no. 2, pp. 184–194, 1981.10.1080/02723646.1981.10642213Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo