1. bookVolume 4 (2014): Edition 3 (July 2014)
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais
Accès libre

Repulsive Self-Adaptive Acceleration Particle Swarm Optimization Approach

Publié en ligne: 01 Mar 2015
Volume & Edition: Volume 4 (2014) - Edition 3 (July 2014)
Pages: 189 - 204
Détails du magazine
License
Format
Magazine
eISSN
2449-6499
Première parution
30 Dec 2014
Périodicité
4 fois par an
Langues
Anglais

[1] J. Kennedy and R. Eberhart, Particle swarm optimization, Proceedings of IEEE International Conference on Neural Networks, 4:1942–1948, 1995.Search in Google Scholar

[2] A. Engelbrecht, Computational Intelligence: An Introduction, 2nd Edition, Wiley, 2007.10.1002/9780470512517Search in Google Scholar

[3] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients, IEEE Transaction on Evolutionary Computation, 8(3):240–255, 2004.10.1109/TEVC.2004.826071Search in Google Scholar

[4] X. Li, H. Fu, and C. Zhang, A self-adaptive particle swarm optimization algorithm, Proceedings of the 2008 International Conference on Computer Science and Software Engineering, 186–189, 2008.10.1109/CSSE.2008.142Search in Google Scholar

[5] I. C. Trelea, The Particle Swarm Optimization Algorithm: Convergence Analysis and Parameter Selection, Information Processing Letters, 85(6), 317-325, 2003.10.1016/S0020-0190(02)00447-7Search in Google Scholar

[6] F. Van den Bergh and A. P. Engelbrecht, A Study of Particle Swarm Optimization Particle Trajectories, Information Sciences, 176(8), 937-971, 2006.10.1016/j.ins.2005.02.003Search in Google Scholar

[7] C. K. Monson, K. D. Seppi, Exposing Origin-Seeking Bias in PSO, Proceedings of GECCO’05, pp. 241-248, 2005.10.1145/1068009.1068045Search in Google Scholar

[8] F. Van den Bergh and A. P. Engelbrecht, A new locally convergent particle swarm optimiser, Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, 3:94–99, 2002.Search in Google Scholar

[9] F. Schutte, A. A. Groenwold, A Study of Global Optimization using Particle Swarms, Journal of Global Optimization, 31, 93-108, 2005.10.1007/s10898-003-6454-xSearch in Google Scholar

[10] A. Chatterjee, P. Siarry, Nonlinear inertial weight variation for dynamic adaptation in particle swarm optimization, Journal of Computer Operation Research, 33(3), 859-871, 2004.10.1016/j.cor.2004.08.012Search in Google Scholar

[11] X. Yang, J. Yuan, J. Yuan, and H. Mao, A modified particle swarm optimizer with dynamic adaptation, Applied Mathematics and Computation, 189(2):1205–1213, 2007.10.1016/j.amc.2006.12.045Search in Google Scholar

[12] J. Zhu, J. Zhao, and X. Li, A new adaptive particle swarm optimization algorithm, International Workshop on Modelling, Simulation and Optimization, 456–458, 2008.10.1109/WMSO.2008.115Search in Google Scholar

[13] Y. Bo, Z. Ding-Xue, and L. Rui-Quan, A modified particle swarm optimization algorithm with dynamic adaptive, 2007 Third International Conference on Intelligent Information Hiding and Multimedia Signal Processing, 2:346–349, 2007.Search in Google Scholar

[14] T. Yamaguchi and K. Yasuda, Adaptive particle swarm optimization; self-coordinating mechanism with updating information, IEEE International Conference on Systems, Man and Cybernetics, 2006. SMC ’06, 3:2303–2308, 2006.10.1109/ICSMC.2006.385206Search in Google Scholar

[15] T. Yamaguchi, N. Iwasaki, and K. Yasuda, Adaptive particle swarm optimization using information about global best, IEEE Transactions on Electronics, Information and Systems, 126:270–276, 2006.10.1541/ieejeiss.126.270Search in Google Scholar

[16] K. Yasruda, K. Yazawa, and M. Motoki, Particle swarm optimization with parameter self-adjusting mechanism, IEEE Transactions on Electrical and Electronic Engineering, 5(2):256–257, 2010.10.1002/tee.20525Search in Google Scholar

[17] S. A. Ludwig, Towards A Repulsive and Adaptive Particle Swarm Optimization Algorithm, Proceedings of Genetic and Evolutionary Computation Conference (ACM GECCO), Amsterdam, Netherlands, July 2013 (short paper).10.1145/2464576.2464584Search in Google Scholar

[18] J. Riget and J. S. Vesterstrø, A diversity-guided particle swarm optimizer—The ARPSO, EVALife Technical Report no. 2002-2, 2002.Search in Google Scholar

[19] A. Ide and K. Yasuda, A basic study of adaptive particle swarm optimization, Denki Gakkai Ronbunshi, Electrical Engineering in Japan, 151(3):41–49, 2005.10.1002/eej.20077Search in Google Scholar

[20] M. Meissner, M. Schmuker, and G. Schneider, Optimized particle swarm optimization (OPSO) and its application to artificial neural network training, BMC Bioinformatics, 7(1):125, 2006.10.1186/1471-2105-7-125146413616529661Search in Google Scholar

[21] X. Cai, Z. Cui, J. Zeng, and Y. Tan, Self-learning particle swarm optimization based on environmental feedback, Innovative Computing, Information and Control, 2007. ICICIC ’07, page 570, 2007.10.1109/ICICIC.2007.512Search in Google Scholar

[22] Z. H. Zhan and J. Zhang, Proceedings of the 6th International Conference on Ant Colony Optimization and Swarm Intelligence, pages 227–234, 2008.Search in Google Scholar

[23] M. Clerc, Semi-continuous challenge, http://clerc.maurice.free.fr/pso/semicontinuouschallenge/, April 2004.Search in Google Scholar

[24] M. Molga and C. Smutnicki, Test functions for optimization needs, http://zsd.iiar.pwr.wroc.pl/, 2005.Search in Google Scholar

[25] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, Adaptive particle swarm optimization, IEEE Transactions on Systems, Man, and Cybernetics Part B: Cybernetics, 39(6):1362–1381, 2009.10.1109/TSMCB.2009.201595619362911Search in Google Scholar

[26] M. Friedman, The use of ranks to avoid the assumption of normality implicit in the analysis of variance, Journal of the American Statistical Association, vol. 32, no. 200, pp. 675–701, 1937.10.1080/01621459.1937.10503522Search in Google Scholar

Articles recommandés par Trend MD

Planifiez votre conférence à distance avec Sciendo