Predicting the vessel lumen area tree-ring parameter of Quercus robur with linear and nonlinear machine learning algorithms
, et
05 nov. 2018
À propos de cet article
Catégorie d'article: Regular Articles
Publié en ligne: 05 nov. 2018
Pages: 211 - 222
Reçu: 26 janv. 2018
Accepté: 28 août 2018
DOI: https://doi.org/10.1515/geochr-2015-0097
Mots clés
© 2018 J. Jevšenak.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License.
Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

Description of predictors of the VLA for QURO-1 and QURO-2_
Predictor | Description | |
---|---|---|
QURO-1 | T_Jul_Sep | Average temperature from July to September, previous growing season |
T_MAR | Average March temperature, current growing season | |
T_APR | Average April temperature, current growing season | |
T_MAY | Average May temperature, current growing season | |
T_JUN | Average June temperature, current growing season | |
P_JAN-MAR | Sum of precipitation from January to March, current growing season | |
QURO-2 | T_Jul-Nov | Average temperature from July to November, previous growing season |
T_JAN | Average January temperature, current growing season | |
T_APR | Average April temperature, current growing season | |
T_MAY | Average May temperature, current growing season | |
T_JUN | Average June temperature, current growing season |
Pearson correlation coefficients between vessel lumen area (VLA) and climate data: mean monthly temperatures (TEMP) and sum of monthly precipitation (PREC) for QURO-1 and QURO-2_ Months with capital letters refer to the current growing season, while months with lowercase letters refer to the year of the previous growing season_ Only correlation coefficients with p ≤ 0_01 are shown_
Month | QURO-1 | QURO-2 | |||
---|---|---|---|---|---|
TEMP | PREC | TEMP | PREC | ||
Previous growing season | Jul | 0.45 | 0.53 | ||
Aug | 0.49 | 0.46 | |||
Sep | 0.37 | 0.38 | |||
Oct | 0.35 | ||||
Nov | 0.37 | ||||
Dec | |||||
Jul–Sep | 0.57 | ||||
Jul–Nov | 0.71 | ||||
Current growing season | JAN | –0.41 | 0.44 | ||
FEB | |||||
MAR | 0.38 | –0.33 | |||
APR | 0.60 | 0.63 | |||
MAY | 0.32 | 0.47 | |||
JUN | 0.47 | 0.50 | |||
JAN–MAR | –0.43 |
General description of the analysed sites_
Location / Site denotation | Year of sampling | Latitude | Longitude | Elevation (m) | Bedrock | Forest soil type | Meteorological station | Average age of measured tree |
---|---|---|---|---|---|---|---|---|
2012 | N46°18′21′′ | E15°30′35′′ | 280–315 | Marl | Eutric brown soil | Maribor | 150 | |
2015 | N46°11′23′′ | E14°25′26′′ | 360–365 | Alluvial loams and clays | Dystric brown soil | Ljubljana | 90 |
Characteristics of site chronologies: number of samples (N), chronology span, mean and standard deviation (Std) of vessel areas, minimum and maximum range of vessel areas (Min – Max), rbar (r̄) and autocorrelation with lag 1, 2 and 3 (AC)_
Mean ± Std | Min – Max | |||||||
---|---|---|---|---|---|---|---|---|
Site | N | Chronology span | (μm2 104) | (μm2 104) | r̄ | AC_1 | AC_2 | AC_3 |
6 | 2012–1961 | 6.259 ± 0.603 | 5.133–7.743 | 0.44 | 0.42 | 0.40 | 0.31 | |
8 | 2015–1961 | 4.691 ± 0.395 | 4.072–5.756 | 0.32 | 0.61 | 0.52 | 0.46 |
Comparison of the performance of five predictive modelling methods for A) QURO_1 and B) QURO_2 sites_ Methods were evaluated by 3-fold cross-validation repeated 100 times_ The five predictive modelling methods were Multiple Linear Regression (MLR), Artificial Neural Networks (ANN), Model Trees (MT), Bagging of Model Trees (BMT) and Random Forests of Regression Trees (RF)_ The performance measures were the correlation coefficient (r), root relative squared error (RRSE), root mean squared error (RMSE), index of agreement (d), reduction of error (RE), coefficient of efficiency (CE) and detrended efficiency (DE), calculated on the training (train) and testing (test) data of cross-validation splits_ Across the 100 runs of cross-validation, we present the mean, standard deviations (Std), mean rank and share of rank 1 for each performance measure_ The best values of each performance measure on the test set are highlighted in bold_
MLR | ANN | MT | BMT | RF | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
mean | std | mean | std | mean | std | mean | std | mean | std | ||
(A) QURO-1 | |||||||||||
rtrain | 0.797 | 0.037 | 0.815 | 0.043 | 0.789 | 0.059 | 0.810 | 0.030 | 0.898 | 0.018 | |
rtest | 0.694 | 0.103 | 0.095 | 0.633 | 0.134 | 0.692 | 0.112 | 0.689 | 0.097 | ||
RMSEtrain | 0.356 | 0.027 | 0.343 | 0.042 | 0.359 | 0.047 | 0.360 | 0.025 | 0.302 | 0.022 | |
RMSEtest | 0.453 | 0.063 | 0.066 | 0.488 | 0.079 | 0.447 | 0.065 | 0.453 | 0.066 | ||
RRSEtrain | 0.601 | 0.048 | 0.580 | 0.077 | 0.606 | 0.080 | 0.608 | 0.041 | 0.510 | 0.035 | |
RRSEtest | 0.786 | 0.134 | 0.123 | 0.845 | 0.148 | 0.771 | 0.106 | 0.778 | 0.083 | ||
dtrain | 0.877 | 0.026 | 0.878 | 0.059 | 0.871 | 0.042 | 0.851 | 0.030 | 0.898 | 0.019 | |
dtest | 0.794 | 0.066 | 0.073 | 0.753 | 0.081 | 0.757 | 0.067 | 0.723 | 0.069 | ||
REtest | 0.405 | 0.227 | 0.184 | 0.312 | 0.257 | 0.435 | 0.158 | 0.429 | 0.110 | ||
CEtest | 0.364 | 0.237 | 0.202 | 0.265 | 0.273 | 0.394 | 0.174 | 0.387 | 0.132 | ||
DEtest | 0.317 | 0.249 | 0.215 | 0.210 | 0.289 | 0.348 | 0.188 | 0.339 | 0.155 | ||
rank | rank1 | rank | rank1 | rank | rank1 | rank | rank1 | rank | rank1 | ||
rtrain | 3.92 | 0.00 | 2.67 | 0.02 | 4.16 | 0.03 | 2.95 | 0.00 | 1.05 | 0.95 | |
rtest | 2.91 | 0.11 | 3.93 | 0.06 | 2.93 | 0.15 | 3.12 | 0.20 | |||
RMSEtrain | 3.45 | 0.00 | 2.33 | 0.05 | 3.93 | 0.07 | 3.90 | 0.00 | 1.13 | 0.88 | |
RMSEtest | 2.95 | 0.14 | 3.86 | 0.06 | 2.82 | 0.12 | 3.22 | 0.21 | |||
RRSEtrain | 3.45 | 0.00 | 2.33 | 0.05 | 3.93 | 0.07 | 3.90 | 0.00 | 1.13 | 0.88 | |
RRSEtest | 2.95 | 0.14 | 3.86 | 0.06 | 2.82 | 0.12 | 3.22 | 0.21 | |||
dtrain | 2.64 | 0.07 | 2.52 | 0.13 | 3.39 | 0.13 | 4.71 | 0.00 | 1.49 | 0.68 | |
dtest | 2.18 | 0.24 | 3.32 | 0.09 | 3.45 | 0.02 | 4.29 | 0.03 | |||
REtest | 2.96 | 0.14 | 3.86 | 0.06 | 2.82 | 0.12 | 3.22 | 0.21 | |||
CEtest | 2.96 | 0.14 | 3.86 | 0.06 | 2.82 | 0.12 | 3.22 | 0.21 | |||
DEtest | 2.95 | 0.14 | 3.86 | 0.06 | 2.82 | 0.12 | 3.22 | 0.21 | |||
Overalltrain | 3.37 | 0.02 | 2.46 | 0.06 | 3.85 | 0.08 | 3.86 | 0.00 | 1.20 | 0.85 | |
Overalltest | 2.75 | 0.16 | 3.74 | 0.07 | 3.00 | 0.11 | 3.46 | 0.16 | |||
rtrain | 0.796 | 0.044 | 0.843 | 0.035 | 0.800 | 0.039 | 0.839 | 0.028 | 0.907 | 0.020 | |
rtest | 0.717 | 0.093 | 0.084 | 0.687 | 0.104 | 0.740 | 0.087 | 0.747 | 0.094 | ||
RMSEtrain | 0.232 | 0.019 | 0.209 | 0.027 | 0.232 | 0.019 | 0.216 | 0.015 | 0.180 | 0.013 | |
RMSEtest | 0.293 | 0.041 | 0.042 | 0.297 | 0.040 | 0.278 | 0.040 | 0.274 | 0.043 | ||
RRSEtrain | 0.601 | 0.058 | 0.541 | 0.080 | 0.602 | 0.052 | 0.560 | 0.044 | 0.465 | 0.044 | |
RRSEtest | 0.792 | 0.164 | 0.150 | 0.801 | 0.147 | 0.745 | 0.126 | 0.733 | 0.107 | ||
dtrain | 0.874 | 0.032 | 0.899 | 0.059 | 0.866 | 0.030 | 0.883 | 0.024 | 0.921 | 0.018 | |
dtest | 0.793 | 0.057 | 0.077 | 0.765 | 0.068 | 0.789 | 0.052 | 0.782 | 0.058 | ||
REtest | 0.410 | 0.253 | 0.202 | 0.401 | 0.234 | 0.483 | 0.189 | 0.503 | 0.142 | ||
CEtest | 0.346 | 0.299 | 0.248 | 0.337 | 0.283 | 0.428 | 0.230 | 0.451 | 0.179 | ||
DEtest | 0.297 | 0.356 | 0.295 | 0.286 | 0.359 | 0.384 | 0.300 | 0.409 | 0.236 | ||
rank | rank1 | rank | rank1 | rank | rank1 | rank | rank1 | rank | rank1 | ||
rtrain | 4.54 | 0.00 | 2.44 | 0.00 | 4.30 | 0.00 | 2.72 | 0.00 | 1.00 | 1.00 | |
rtest | 3.61 | 0.06 | 4.21 | 0.04 | 2.82 | 0.07 | 2.65 | 0.22 | |||
RMSEtrain | 4.42 | 0.00 | 2.22 | 0.01 | 4.26 | 0.00 | 3.08 | 0.00 | 1.01 | 0.99 | |
RMSEtest | 3.70 | 0.03 | 4.05 | 0.03 | 2.78 | 0.11 | 2.72 | 0.20 | |||
RRSEtrain | 4.42 | 0.00 | 2.22 | 0.01 | 4.26 | 0.00 | 3.08 | 0.00 | 1.01 | 0.99 | |
RRSEtest | 3.70 | 0.03 | 4.05 | 0.03 | 2.78 | 0.11 | 2.72 | 0.20 | |||
dtrain | 4.05 | 0.00 | 1.99 | 0.11 | 4.34 | 0.00 | 3.49 | 0.00 | 1.13 | 0.89 | |
dtest | 3.09 | 0.03 | 4.02 | 0.03 | 3.15 | 0.04 | 3.44 | 0.05 | |||
REtest | 3.70 | 0.03 | 4.05 | 0.03 | 2.78 | 0.11 | 2.72 | 0.20 | |||
CEtest | 3.70 | 0.03 | 4.05 | 0.03 | 2.78 | 0.11 | 2.72 | 0.20 | |||
DEtest | 3.70 | 0.03 | 4.05 | 0.03 | 2.78 | 0.11 | 2.72 | 0.20 | |||
Overalltrain | 4.36 | 0.00 | 2.22 | 0.03 | 4.29 | 0.00 | 3.09 | 0.00 | 1.04 | 0.97 | |
Overalltest | 3.53 | 0.04 | 4.08 | 0.03 | 2.88 | 0.08 | 2.88 | 0.17 |
Multiple linear regression summary statistics for QURO-1 and QURO-2_
Variable | Coefficients | |||
---|---|---|---|---|
QURO-1 | Intercept | 0.496164 | 0.418 | 0.67767 |
T_Jul–Sep | 0.165491 | 2.617 | 0.01196 | |
T_MAR | 0.042491 | 1.437 | 0.15744 | |
T_APR | 0.159552 | 3.474 | 0.00113 | |
T_JUN | 0.064903 | 1.422 | 0.16164 | |
P_JAN–MAR | –0.00598 | –2.294 | 0.02639 | |
0.6304 | 0.5903 | |||
QURO-2 | Intercept | 1.08324 | 1.792 | 0.07914 |
T_Jul–Nov | 0.12812 | 2.570 | 0.01319 | |
T_JAN | 0.03792 | 2.501 | 0.01569 | |
T_APR | 0.08273 | 2.879 | 0.00586 | |
T_ JUN | 0.04669 | 1.800 | 0.07782 | |
0.6241 | 0.5941 |