Accès libre

Low temperature thermochronology using thermoluminescence signals from K-feldspar

À propos de cet article

Citez

Aitken MJ, 1985. Thermoluminescence Dating. Academic Press Inc, London.AitkenMJ1985Thermoluminescence DatingAcademic Press IncLondonSearch in Google Scholar

Aitken MJ, Tite MS and Reid J, 1964. Thermoluminescent dating of ancient ceramics. Nature 202: 1032–1033, DOI 10.1038/2021032b0.AitkenMJTiteMSReidJ1964Thermoluminescent dating of ancient ceramicsNature2021032103310.1038/2021032b0Open DOISearch in Google Scholar

Bowen R, 1994. Carbon-14 Dating Isotopes in the Earth Sciences (pp. 247–263). Springer.BowenR1994Carbon-14 Dating Isotopes in the Earth Sciences247263Springer10.1007/978-94-009-2611-0_6Search in Google Scholar

Dunai TJ, 2010. Cosmogenic Nuclides: Principles, concepts and applications in the Earth surface sciences. Cambridge University Press.DunaiTJ2010Cosmogenic Nuclides: Principles, concepts and applications in the Earth surface sciencesCambridge University Press10.1017/CBO9780511804519Search in Google Scholar

Gong ZJ, Li SH and Li B, 2014. The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical dating. Geomorphology 213: 201–212, DOI 10.1016/j.geomorph.2014.01.009.GongZJLiSHLiB2014The evolution of a terrace sequence along the Manas River in the northern foreland basin of Tian Shan, China, as inferred from optical datingGeomorphology21320121210.1016/j.geomorph.2014.01.009Open DOISearch in Google Scholar

Guralnik B, Ankjærgaard C, Jain M, Murray AS, Müller A, Wälle M, Lowick SE, Preusser F, Rhodes EJ, Wu TS and Mathew G, 2015. OSL-thermochronometry using bedrock quartz: A note of caution. Quaternary Geochronology 25: 37–48, DOI 10.1016/j.quageo.2014.09.001.GuralnikBAnkjærgaardCJainMMurrayASMüllerAWälleMLowickSEPreusserFRhodesEJWuTSMathewG2015OSL-thermochronometry using bedrock quartz: A note of cautionQuaternary Geochronology25374810.1016/j.quageo.2014.09.001Open DOISearch in Google Scholar

Herman F, Rhodes EJ, Braun J and Heiniger L, 2010. Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronology. Earth and Planetary Science Letters 297(1): 183–189, DOI 10.1016/j.epsl.2010.06.019.HermanFRhodesEJBraunJHeinigerL2010Uniform erosion rates and relief amplitude during glacial cycles in the Southern Alps of New Zealand, as revealed from OSL-thermochronologyEarth and Planetary Science Letters297118318910.1016/j.epsl.2010.06.019Open DOISearch in Google Scholar

Jain M, Bøtter-Jensen L, Murray AS, Denby PM, Tsukamoto S, and Gibling MR, 2005. Revisiting TL: dose measurement beyond the OSL range using SAR. Ancient TL 23: 9–24.JainMBøtter-JensenLMurrayASDenbyPMTsukamotoSGiblingMR2005Revisiting TL: dose measurement beyond the OSL range using SARAncient TL23924Search in Google Scholar

Johnson NM, 1966. Geothermometery from the thermoluminescence of contact-metamorphosedlimestone. Journal of Geology 74: 607–619.JohnsonNM1966Geothermometery from the thermoluminescence of contact-metamorphosedlimestoneJournal of Geology7460761910.1086/627192Search in Google Scholar

King GE, Herman F, Lambert R, Valla PG and Guralnik B, 2016. Multi-OSL-thermochronometry of feldspar. Quaternary Geochronology 33: 76–87, DOI 10.1016/j.quageo.2016.01.004.KingGEHermanFLambertRVallaPGGuralnikB2016Multi-OSL-thermochronometry of feldsparQuaternary Geochronology33768710.1016/j.quageo.2016.01.004Open DOISearch in Google Scholar

Li B and Li SH, 2011. Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction. Quaternary Geochronology 6: 468–479, DOI 10.1016/j.quageo.2011.05.001.LiBLiSH2011Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correctionQuaternary Geochronology646847910.1016/j.quageo.2011.05.001Open DOISearch in Google Scholar

Li B and Li SH, 2012. Determining the cooling age using luminescence-thermochronology. Tectonophysics 580: 242–248, DOI 10.1016/j.tecto.2012.09.023.LiBLiSH2012Determining the cooling age using luminescence-thermochronologyTectonophysics58024224810.1016/j.tecto.2012.09.023Open DOISearch in Google Scholar

Li SH, Chen YY, Li B, Sun JM and Yang LR, 2007. OSL dating of sediments from deserts in northern China. Quaternary Geochronology 2: 23–28, DOI 10.1016/j.quageo.2006.05.034.LiSHChenYYLiBSunJMYangLR2007OSL dating of sediments from deserts in northern ChinaQuaternary Geochronology2232810.1016/j.quageo.2006.05.034Open DOISearch in Google Scholar

Martin L, Incerti S and Mercier N, 2016. DosiVox: Implementing Geant 4-based software for dosimetry simulations relevant to luminescence and ESR dating techniques. Ancient TL 33(1): 1–10.MartinLIncertiSMercierN2016DosiVox: Implementing Geant 4-based software for dosimetry simulations relevant to luminescence and ESR dating techniquesAncient TL331110Search in Google Scholar

Martin L, Mercier N, Incerti S, Lefrais Y, Pecheyran C, Guérin G, Jarry M, Bruxelles L, Bon F and Pallier C, 2015. Dosimetric study of sediments at the beta dose rate scale: Characterization and modelization with the DosiVox software. Radiation Measurements 81: 134–141, DOI 10.1016/j.radmeas.2015.02.008.MartinLMercierNIncertiSLefraisYPecheyranCGuérinGJarryMBruxellesLBonFPallierC2015Dosimetric study of sediments at the beta dose rate scale: Characterization and modelization with the DosiVox softwareRadiation Measurements8113414110.1016/j.radmeas.2015.02.008Open DOISearch in Google Scholar

Murray AS and Wintle AG, 2000. Application of the single-aliquot regenerative-dose protocol to the 375 C quartz TL signal. Radiation Measurements 32(5): 579–583, DOI 10.1016/S1350-4487(00)00089-5.MurrayASWintleAG2000Application of the single-aliquot regenerative-dose protocol to the 375 C quartz TL signalRadiation Measurements32557958310.1016/S1350-4487(00)00089-5Open DOISearch in Google Scholar

Prokein J and Wagner GA, 1994. Analysis of thermoluminescent glow peaks in quartz derived from the KTB-drill hole. Radiation Measurements 23(1): 85–94, DOI 10.1016/1350-4487(94)90026-4.ProkeinJWagnerGA1994Analysis of thermoluminescent glow peaks in quartz derived from the KTB-drill holeRadiation Measurements231859410.1016/1350-4487(94)90026-4Open DOISearch in Google Scholar

Qin J, Chen J, Valla PG, Herman F and Li K, 2015. Estimating rock cooling rates by using multiple luminescence thermochronometers. Radiation Measurements 81: 85–91, DOI 10.1016/j.radmeas.2015.08.010.QinJChenJVallaPGHermanFLiK2015Estimating rock cooling rates by using multiple luminescence thermochronometersRadiation Measurements81859110.1016/j.radmeas.2015.08.010Open DOISearch in Google Scholar

Sarkar SD, Mathew G, Pande K, Chauhan N and Singhvi AK, 2013. Rapid denudationof higher himalaya during late Pleistocence, evidence from OSL thermochronology. Geochronometria 40: 304–310, DOI 10.2478/s13386-013-0124-7.SarkarSDMathewGPandeKChauhanNSinghviAK2013Rapid denudationof higher himalaya during late Pleistocence, evidence from OSL thermochronologyGeochronometria4030431010.2478/s13386-013-0124-7Open DOISearch in Google Scholar

Tang SL and Li SH, 2015. Low temperature thermochronology using thermoluminescence signals from quartz. Radiation Measurements 81: 92–97, DOI 10.1016/j.radmeas.2015.04.011.TangSLLiSH2015Low temperature thermochronology using thermoluminescence signals from quartzRadiation Measurements81929710.1016/j.radmeas.2015.04.011Open DOISearch in Google Scholar

eISSN:
1897-1695
Langue:
Anglais
Périodicité:
Volume Open
Sujets de la revue:
Geosciences, other