À propos de cet article

Citez

1. Burakowski T., Wierzchoń T., Inżynieria powierzchni metali. WNT, Warsaw, 1995.Search in Google Scholar

2. LOESER company materials.Search in Google Scholar

3. Iwaszko J., Kudła K., Szafarska M., Remelting treatment of the non-conductive oxide coatings by means of the modified GTAW method, Surface and Coatings Technology, 206, (2012), 2845-2850.10.1016/j.surfcoat.2011.12.009Search in Google Scholar

4. Górka J., Czupryński A., The properties and structure of arc sprayed coatings alloy of Fe-Cr-Ti-Si-Mn, International Journal of Modern Manufacturing Technologies, 8 (2016), 35-40.Search in Google Scholar

5. Czupryński A., Selected properties of the thermally sprayed oxide ceramic coatings, Advances in Materials Science, 15 (3) (2015), 17-32.10.1515/adms-2015-0012Search in Google Scholar

6. Pan S., Wang N., Xiong D., Deng Y., Shi Y., Fabrication of superhydrophobic coating via spraying method and its applications in anti-icing and anti-corrosion, Applied Surface Science, 389 (2016), 547-553.10.1016/j.apsusc.2016.07.138Search in Google Scholar

7. Czupryński A., Górka J., Adamiak M., Tomiczek B., Testing of flame sprayed Al2O3 matrix coatings containing TiO2, Archives of Metallurgy and Materials, 61 (3) (2016), 1363-1370.10.1515/amm-2016-0224Search in Google Scholar

8. Bartmański M., Berk A., Wójcik A., The determinants of morphology and properties of the nanohydroxyapatite coating deposited on the Ti13Zr13Nb alloy by electrophoretic technique, Advances in Materials Science, 16 (3) (2016), 56-66.10.1515/adms-2016-0017Search in Google Scholar

9. Świercz R., Oniszczuk-Świercz D., Experimental investigation of surface layer properties of high thermal conductivity tool steel after electrical discharge machining, Metals, 7 (2017), 550.10.3390/met7120550Search in Google Scholar

10. Samardžiová M., Neslušan M., Roughness improvement in hard turning when changing cutting parameters and using differently shaped ceramic tools, Applied Mechanics and Materials, 474 (2014), 345-350.10.4028/www.scientific.net/AMM.474.345Search in Google Scholar

11. Swiatkowski K., Cacko R., Investigation of new wax-based model materials simulating metal working process, Journal of Materials Processing Technology, 72 (1997), 267-271.10.1016/S0924-0136(97)00179-9Search in Google Scholar

12. Makarov V.F., Vinogradov A.V., Nurtdinov A.V., Automated polishing of sharp edges on gas-turbine components by abrasive polymer brushes, Russian Engineering Research, 32 (2012), 102-107.10.3103/S1068798X12010182Search in Google Scholar

13. Bańkowski D., Spadło S., Influence of the Smoothing Conditions in Vibro-Abrasive for Technically Dry Friction the Parts Made of Steel X160CRMOV121, Proceedings of 25th International Conference on Metallurgy and Materials, METAL 2016, 1019-1024.Search in Google Scholar

14. Chmielewski T., Golański D., Włosiński W., Zimmerman J., Utilizing the energy of kinetic friction for the metallization of ceramics, Bulletin of the Polish Academy of Sciences - Technical Sciences, 63 (1) (2015), 201-207.10.1515/bpasts-2015-0023Search in Google Scholar

15. Dou W., Nitzan A., Subotnik J.E., Frictional effects near a metal surface, The Journal of Chemical Physics, 143 (2015) 054103.Search in Google Scholar

16. Chmielewski T., Golański D., Włosiński W., Metallization of ceramic materials based on the kinetic energy of detonation waves Bulletin of the Polish Academy of Sciences - Technical Sciences, 63 (2) (2015), 449-456.10.1515/bpasts-2015-0051Search in Google Scholar

eISSN:
2083-4799
Langue:
Anglais
Périodicité:
4 fois par an
Sujets de la revue:
Materials Sciences, Functional and Smart Materials