This work is licensed under the Creative Commons Attribution 4.0 International License.
Andersson T., Gustafsson N., 1994. Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snow bands over sea and lakes. Monthly Weather Review 122: 1036–1049.de AnderssonT.GustafssonN.1994. Coast of departure and coast of arrival: Two important concepts for the formation and structure of convective snow bands over sea and lakes. Monthly Weather Review122: 1036–1049.Search in Google Scholar
Baltaci H., Arslan H., Akkoyunlu B.O., Gomes H.B., 2020. Long-term variability and trends of extended winter snowfall in Turkey and the role of teleconnection patterns. Meteorological Applications 27: e1891. DOI 10.1002/met.1891.BaltaciH.ArslanH.AkkoyunluB.O.GomesH.B.2020. Long-term variability and trends of extended winter snowfall in Turkey and the role of teleconnection patterns. Meteorological Applications27: e1891. DOI 10.1002/met.1891.Open DOISearch in Google Scholar
Barnes E.A., Dunn-Sigouin E., Masato G., Woollings T., 2014. Exploring recent trends in Northern Hemisphere blocking. Geophysical Research Letters 41: 638–644. DOI 10.1002/2013GL058745.BarnesE.A.Dunn-SigouinE.MasatoG.WoollingsT.2014. Exploring recent trends in Northern Hemisphere blocking. Geophysical Research Letters41: 638–644. DOI 10.1002/2013GL058745.Open DOISearch in Google Scholar
Barnett T.P., Dumenil L., Schlese U., Roeckner E., Latif M., 1989. The effect of Eurasian snow cover on regional and global climate variations. Journal of Atmospheric Sciences 46: 661–685.BarnettT.P.DumenilL.SchleseU.RoecknerE.LatifM.1989. The effect of Eurasian snow cover on regional and global climate variations. Journal of Atmospheric Sciences46: 661–685.Search in Google Scholar
Bednorz E., 2008. Synoptic reasons for heavy snowfalls in the Polish–German lowlands. Theoretical and Applied Climatology 92: 133–140. DOI 10.1007/s00704-007-0322-4.BednorzE.2008. Synoptic reasons for heavy snowfalls in the Polish–German lowlands. Theoretical and Applied Climatology92: 133–140. DOI 10.1007/s00704-007-0322-4.Open DOISearch in Google Scholar
Bednorz E. 2011. Occurrence of winter air temperature extremes in Central Spitsbergen. Theoretical and Applied Climatology 106: 547–556. DOI 10.1007/s00704-011-0423-y.BednorzE.2011. Occurrence of winter air temperature extremes in Central Spitsbergen. Theoretical and Applied Climatology106: 547–556. DOI 10.1007/s00704-011-0423-y.Open DOISearch in Google Scholar
Bednorz E., 2013. Heavy snow in Polish-German lowlands – Large-scale synoptic reasons and economic impacts. Weather and Climate Extremes 2: 1–6. DOI 10.1016/j.wace.2013.10.007.BednorzE.2013. Heavy snow in Polish-German lowlands – Large-scale synoptic reasons and economic impacts. Weather and Climate Extremes2: 1–6. DOI 10.1016/j.wace.2013.10.007.Open DOISearch in Google Scholar
Bednorz E., Wibig J., 2016. Spatial distribution and synoptic conditions of snow accumulation in the Russian Arctic. Polar Research 35: 25916. DOI 10.3402/polar.v35.25916.BednorzE.WibigJ.2016. Spatial distribution and synoptic conditions of snow accumulation in the Russian Arctic. Polar Research35: 25916. DOI 10.3402/polar.v35.25916.Open DOISearch in Google Scholar
Bednorz E., Wibig J., 2017. Circulation patterns governing October snowfalls in southern Siberia. Theoretical and Applied Climatology 128: 129–139. DOI 10.1007/s00704-015-1696-3.BednorzE.WibigJ.2017. Circulation patterns governing October snowfalls in southern Siberia. Theoretical and Applied Climatology128: 129–139. DOI 10.1007/s00704-015-1696-3.Open DOISearch in Google Scholar
Bednorz, E., Czernecki, B., Tomczyk, A.M., 2022. Climatology and extreme cases of sea-effect snowfall on the southern Baltic Sea coast. International Journal of Climatology 42: 5520–5534. DOI 10.1002/joc.7546.BednorzE.CzerneckiB.TomczykA.M.2022. Climatology and extreme cases of sea-effect snowfall on the southern Baltic Sea coast. International Journal of Climatology42: 5520–5534. DOI 10.1002/joc.7546.Open DOISearch in Google Scholar
Beniston M., Farinotti D., Stoffel M., Andreassen L.M., Coppola E., Eckert N., Fantini A., Giacona F., Hauck C., Huss M., Huwald H., Lehning M., López-Moreno J.-I., Magnusson J., Marty C., Morán-Tejéda E., Morin S., Naaim M., Provenzale A., Rabatel A., Six D., Stötter J., Strasser U., Terzago S., Vincent C., 2018. The European mountain cryosphere: A review of its current state, trends, and future challenges. The Cryosphere 12: 759–794. DOI 10.5194/tc-12-759-2018.BenistonM.FarinottiD.StoffelM.AndreassenL.M.CoppolaE.EckertN.FantiniA.GiaconaF.HauckC.HussM.HuwaldH.LehningM.López-MorenoJ.-I.MagnussonJ.MartyC.Morán-TejédaE.MorinS.NaaimM.ProvenzaleA.RabatelA.SixD.StötterJ.StrasserU.TerzagoS.VincentC.2018. The European mountain cryosphere: A review of its current state, trends, and future challenges. The Cryosphere12: 759–794. DOI 10.5194/tc-12-759-2018.Open DOISearch in Google Scholar
Bintanja R., 2018. The impact of Arctic warming on increased rainfall. Scientific Reports 8: 16001. DOI 10.1038/s41598-018-34450-3.BintanjaR.2018. The impact of Arctic warming on increased rainfall. Scientific Reports8: 16001. DOI 10.1038/s41598-018-34450-3.Open DOISearch in Google Scholar
Buehler T., Raible C.C., Stocker T.F., 2011. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A 63: 212–222. DOI 10.1111/j.1600-0870.2010.00492.x.BuehlerT.RaibleC.C.StockerT.F.2011. The relationship of winter season North Atlantic blocking frequencies to extreme cold or dry spells in the ERA-40. Tellus A63: 212–222. DOI 10.1111/j.1600-0870.2010.00492.x.Open DOISearch in Google Scholar
Cattiaux J., Douville H., Ribes A., Chauvin F., Plante C., 2012. Towards a better understanding of wintertime cold extremes over Europe: A pilot study with CNRM and IPSL atmospheric models. Climate Dynamics 40: 433–2445. DOI 10.1007/s00382-012-1436-7.CattiauxJ.DouvilleH.RibesA.ChauvinF.PlanteC.2012. Towards a better understanding of wintertime cold extremes over Europe: A pilot study with CNRM and IPSL atmospheric models. Climate Dynamics40: 433–2445. DOI 10.1007/s00382-012-1436-7.Open DOISearch in Google Scholar
Cohen J., Entekhabi D., 2001. The influence of snow cover on Northern Hemisphere climate variability. Atmosphere–Ocean 39: 35–53. DOI 10.1080/07055900.2001.9649665.CohenJ.EntekhabiD.2001. The influence of snow cover on Northern Hemisphere climate variability. Atmosphere–Ocean39: 35–53. DOI 10.1080/07055900.2001.9649665.Open DOISearch in Google Scholar
D’Errico M., Pons F., Yiou P., Tao S., Nardini C., Lunkeit F., Faranda D., 2022. Present and future synoptic circulation patterns associated with cold and snowy spells over Italy. Earth System Dynamics 13: 961–992. DOI 10.5194/esd-13-961-2022.D’ErricoM.PonsF.YiouP.TaoS.NardiniC.LunkeitF.FarandaD.2022. Present and future synoptic circulation patterns associated with cold and snowy spells over Italy. Earth System Dynamics13: 961–992. DOI 10.5194/esd-13-961-2022.Open DOISearch in Google Scholar
Dafis S., Lolis C.J., Houssos E.E., Bartzokas A., 2015. The atmospheric circulation characteristics favouring snowfall in an area with complex relief in Northwestern Greece. International Journal of Climatology 36: 3561–3577. DOI 10.1002/joc.4576.DafisS.LolisC.J.HoussosE.E.BartzokasA.2015. The atmospheric circulation characteristics favouring snowfall in an area with complex relief in Northwestern Greece. International Journal of Climatology36: 3561–3577. DOI 10.1002/joc.4576.Open DOISearch in Google Scholar
Davis R.E., Lowit M.B., Knappenberger P.C., 1999. A climatology of snowfall-temperature relationships in Canada. Journal of Geophysical Research Atmospheres 1014: 11985–11994.DavisR.E.LowitM.B.KnappenbergerP.C.1999. A climatology of snowfall-temperature relationships in Canada. Journal of Geophysical Research Atmospheres1014: 11985–11994.Search in Google Scholar
de Pablo Dávila F., Rivas Soriano L.J., Mora García M., González-Zamora A., 2021. Characterization of snowfall events in the northern Iberian Peninsula and the synoptic classification of heavy episodes (1988–2018). International Journal of Climatology 41: 699–713. DOI 10.1002/joc.6646.de Pablo DávilaF.Rivas SorianoL.J.Mora GarcíaM.González-ZamoraA.2021. Characterization of snowfall events in the northern Iberian Peninsula and the synoptic classification of heavy episodes (1988–2018). International Journal of Climatology41: 699–713. DOI 10.1002/joc.6646.Open DOISearch in Google Scholar
Deng H., Pepin N.C., Chen Y., 2017. Changes of snowfall under warming in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres 122: 7323–7341. DOI 10.1002/2017JD026524.DengH.PepinN.C.ChenY.2017. Changes of snowfall under warming in the Tibetan Plateau. Journal of Geophysical Research: Atmospheres122: 7323–7341. DOI 10.1002/2017JD026524.Open DOISearch in Google Scholar
Diodato N., Bellocchi G., 2020. Climate control on snowfall days in peninsular Italy. Theoretical and Applied Climatology 140: 951–961. DOI 10.1007/s00704-020-03136-0.DiodatoN.BellocchiG.2020. Climate control on snowfall days in peninsular Italy. Theoretical and Applied Climatology140: 951–961. DOI 10.1007/s00704-020-03136-0.Open DOISearch in Google Scholar
Falarz, M., 2007. Snow cover variability in Poland in relation to the macro- and mesoscale atmospheric circulation in the twentieth century. International Journal of Climatology 27: 2069–2081. DOI 10.1002/joc.1505.FalarzM.2007. Snow cover variability in Poland in relation to the macro- and mesoscale atmospheric circulation in the twentieth century. International Journal of Climatology27: 2069–2081. DOI 10.1002/joc.1505.Open DOISearch in Google Scholar
Faranda D., 2020. An attempt to explain recent changes in European snowfall extremes. Weather and Climate Dynamics 1: 445–458. DOI 10.5194/wcd-1-445-2020.FarandaD.2020. An attempt to explain recent changes in European snowfall extremes. Weather and Climate Dynamics1: 445–458. DOI 10.5194/wcd-1-445-2020.Open DOISearch in Google Scholar
Farukh M.A., Yamada T.J., 2014. Synoptic climatology associated with extreme snowfall events in Sapporo city of northern Japan. Atmospheric Science Letters 15: 259–265. DOI 10.1002/asl2.497.FarukhM.A.YamadaT.J.2014. Synoptic climatology associated with extreme snowfall events in Sapporo city of northern Japan. Atmospheric Science Letters15: 259–265. DOI 10.1002/asl2.497.Open DOISearch in Google Scholar
Feng S., Hu Q., 2007. Changes in winter snowfall/precipitation ratio in the contiguous United States. Journal of Geophysical Research: Atmospheres 112: D15109. DOI 10.1029/2007JD008397.FengS.HuQ.2007. Changes in winter snowfall/precipitation ratio in the contiguous United States. Journal of Geophysical Research: Atmospheres112: D15109. DOI 10.1029/2007JD008397.Open DOISearch in Google Scholar
Førland E.J., Hansen-Bauer I., 2003. Climate variations and implications for precipitation types in the Norwegian Arctic. met. no REPORT 24/02 KLIMA, 21.FørlandE.J.Hansen-BauerI.2003. Climate variations and implications for precipitation types in the Norwegian Arctic. met. no REPORT 24/02 KLIMA, 21.Search in Google Scholar
Førland E.J., Isaksen K., Lutz J., Hanssen-Bauer I., 2020. Measured and Modeled Historical Precipitation Trends for Svalbard. Journal of Hydrometeorology 21: 1–15. DOI 10.1175/JHM-D-19-0252.1.FørlandE.J.IsaksenK.LutzJ.Hanssen-BauerI.2020. Measured and Modeled Historical Precipitation Trends for Svalbard. Journal of Hydrometeorology21: 1–15. DOI 10.1175/JHM-D-19-0252.1.Open DOISearch in Google Scholar
Garcia S.C., Salvador F.F., 1994. Snowfall analysis in the Eastern Pyrenees. Offenbach am Main: Proceedings 23rd International Conference on Alpine Meteorology, Selbstverlag Deutscher Wetterdienst, Offenbach, Germany: 303–307.GarciaS.C.SalvadorF.F.1994. Snowfall analysis in the Eastern Pyrenees. Offenbach am Main: Proceedings 23rd International Conference on Alpine Meteorology, Selbstverlag Deutscher Wetterdienst, Offenbach, Germany: 303–307.Search in Google Scholar
Gong G., Entekhabi D., Cohen J., 2002. A large-ensemble model study of the wintertime AO/NAO and the role of interannual snow perturbations. Journal of Climate 15: 3488–3499. DOI 10.1175/1520-0442(2002)015<3488:ALEMSO>2.0.CO;2.GongG.EntekhabiD.CohenJ.2002. A large-ensemble model study of the wintertime AO/NAO and the role of interannual snow perturbations. Journal of Climate15: 3488–3499. DOI 10.1175/1520-0442(2002)015<3488:ALEMSO>2.0.CO;2.Open DOISearch in Google Scholar
Gong G., Entekhabi D., Cohen J., 2003a. Relative impacts of Siberian and North American snow anomalies on the Northern Hemisphere mode. Geophysical Research Letters 30: 16. DOI 10.1029/2003GL017749.GongG.EntekhabiD.CohenJ.2003a. Relative impacts of Siberian and North American snow anomalies on the Northern Hemisphere mode. Geophysical Research Letters30: 16. DOI 10.1029/2003GL017749.Open DOISearch in Google Scholar
Gong G., Entekhabi D., Cohen J., 2003b. Modelled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. Journal of Climate 16: 3917–3931. DOI 10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2.GongG.EntekhabiD.CohenJ.2003b. Modelled Northern Hemisphere winter climate response to realistic Siberian snow anomalies. Journal of Climate16: 3917–3931. DOI 10.1175/1520-0442(2003)016<3917:MNHWCR>2.0.CO;2.Open DOISearch in Google Scholar
Gong G., Entekhabi D., Cohen J., Robinson D.A., 2004. Sensitivity of atmospheric response to modelled snow anomaly characteristics. Journal of Geophysical Research Atmospheres 109: D06107. DOI 10.1029/2003JD004160.GongG.EntekhabiD.CohenJ.RobinsonD.A.2004. Sensitivity of atmospheric response to modelled snow anomaly characteristics. Journal of Geophysical Research Atmospheres109: D06107. DOI 10.1029/2003JD004160.Open DOISearch in Google Scholar
Grab S., 2005. Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thúfur, pounus): Miniature cryogenic mounds. Progress in Physical Geography 29: 139–155. DOI 10.1191/0309133305pp440ra.GrabS.2005. Aspects of the geomorphology, genesis and environmental significance of earth hummocks (thúfur, pounus): Miniature cryogenic mounds. Progress in Physical Geography29: 139–155. DOI 10.1191/0309133305pp440ra.Open DOISearch in Google Scholar
Grundstein A., 2003. A synoptic scale climate analysis of anomalous snow water equivalent over the northern Great Plains of the USA. International Journal of Climatology 23: 871–886. DOI 10.1002/joc.908.GrundsteinA.2003. A synoptic scale climate analysis of anomalous snow water equivalent over the northern Great Plains of the USA. International Journal of Climatology23: 871–886. DOI 10.1002/joc.908.Open DOISearch in Google Scholar
Hamed K.H., Rao A.R., 1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology 204: 182–196.HamedK.H.RaoA.R.1998. A modified Mann-Kendall trend test for autocorrelated data. Journal of Hydrology204: 182–196.Search in Google Scholar
Holton J.R., Hakim G.J., 2012. An introduction to dynamic meteorology. Elsevier: 524.HoltonJ.R.HakimG.J.2012. An introduction to dynamic meteorology. Elsevier: 524.Search in Google Scholar
Huntington T.G., Hodgkins G.A., Keim B.D., Dudley R.W., 2004. Changes in the proportion of precipitation occurring as snow in New England (1949–2000). Journal of Climate 17: 2626–2636. DOI 10.1175/1520-0442(2004)017<2626:CIT-POP>2.0.CO;2.HuntingtonT.G.HodgkinsG.A.KeimB.D.DudleyR.W.2004. Changes in the proportion of precipitation occurring as snow in New England (1949–2000). Journal of Climate17: 2626–2636. DOI 10.1175/1520-0442(2004)017<2626:CIT-POP>2.0.CO;2.Open DOISearch in Google Scholar
Hynčica M., Huth R., 2019a. Long-term changes in precipitation phase in Europe in cold half year. Atmospheric Research 227: 79–88. DOI 10.1016/j.atmosres.2019.04.032.HynčicaM.HuthR.2019a. Long-term changes in precipitation phase in Europe in cold half year. Atmospheric Research227: 79–88. DOI 10.1016/j.atmosres.2019.04.032.Open DOISearch in Google Scholar
Hynčica M., Huth R., 2019b. Long-term changes in precipitation phase in Czechia. Geografie 124: 41–55. DOI 10.37040/geografie2019124010041.HynčicaM.HuthR.2019b. Long-term changes in precipitation phase in Czechia. Geografie124: 41–55. DOI 10.37040/geografie2019124010041.Open DOISearch in Google Scholar
IPCC [Intergovernmental Panel of Climate Change], 2021. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., Huang M., Leitzell K., Lonnoy E., Matthews J.B.R., Maycock T.K., Waterfield T., Yelekçi O., Yu R., Zhou B. (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA. DOI 10.1017/9781009157896.IPCC [Intergovernmental Panel of Climate Change], 2021. Climate Change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. In: Masson-DelmotteV.ZhaiP.PiraniA.ConnorsS.L.PéanC.BergerS.CaudN.ChenY.GoldfarbL.GomisM.I.HuangM.LeitzellK.LonnoyE.MatthewsJ.B.R.MaycockT.K.WaterfieldT.YelekçiO.YuR.ZhouB. (eds), Cambridge University Press, Cambridge, UK and New York, NY, USA. DOI 10.1017/9781009157896.Open DOISearch in Google Scholar
Irannezhad M., Ronkanena A.-K., Kiania S., Chenb D., Kløvea B., 2017. Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. Cold Regions Science and Technology 143: 23–31. DOI 10.1016/j.coldre-gions.2017.08.008.IrannezhadM.RonkanenaA.-K.KianiaS.ChenbD.KløveaB.2017. Long-term variability and trends in annual snowfall/total precipitation ratio in Finland and the role of atmospheric circulation patterns. Cold Regions Science and Technology143: 23–31. DOI 10.1016/j.coldre-gions.2017.08.008.Open DOISearch in Google Scholar
Kalnay E., Kanamitsu M., Kistler R., Collins W., Deaven D., Gandin L., Iredell M., Saha S., White G., Woollen J., Zhu Y., Chelliah M., Ebisuzaki W., Higgins W., Janowiak J., Mo K.C., Ropelewski C., Wang J., Leetmaa A., Reynolds R., Roy J., Dennis J., 1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society 77: 437–470. DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.KalnayE.KanamitsuM.KistlerR.CollinsW.DeavenD.GandinL.IredellM.SahaS.WhiteG.WoollenJ.ZhuY.ChelliahM.EbisuzakiW.HigginsW.JanowiakJ.MoK.C.RopelewskiC.WangJ.LeetmaaA.ReynoldsR.RoyJ.DennisJ.1996. The NCEP/NCAR 40-year reanalysis project. Bulletin of American Meteorological Society77: 437–470. DOI 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2.Open DOISearch in Google Scholar
Kapnick S.B., Delworth T.L., 2013. Controls of global snow under a changed climate. Journal of Climate 26: 5537–5562. DOI 10.1175/JCLI-D-12-00528.1.KapnickS.B.DelworthT.L.2013. Controls of global snow under a changed climate. Journal of Climate26: 5537–5562. DOI 10.1175/JCLI-D-12-00528.1.Open DOISearch in Google Scholar
Kendall M., 1975. Multivariate analysis. Charles Griffin & Company, London.KendallM.1975. Multivariate analysis. Charles Griffin & Company, London.Search in Google Scholar
Knowles N., Dettinger M.D., Cayan D.R., 2006. Trends in snowfall versus rainfall in the western United States. Journal of Climate 19: 4545–4559. DOI 10.1175/JCLI3850.1.KnowlesN.DettingerM.D.CayanD.R.2006. Trends in snowfall versus rainfall in the western United States. Journal of Climate19: 4545–4559. DOI 10.1175/JCLI3850.1.Open DOISearch in Google Scholar
Krasting J.P., Broccoli A.J., Dixon K.W., Lanzante J.R., 2013. Future changes in Northern Hemisphere snowfall. Journal of Climate 26: 7813–7828. DOI 10.1175/JCLI-D-12-00832.1.KrastingJ.P.BroccoliA.J.DixonK.W.LanzanteJ.R.2013. Future changes in Northern Hemisphere snowfall. Journal of Climate26: 7813–7828. DOI 10.1175/JCLI-D-12-00832.1.Open DOISearch in Google Scholar
Lehmann J., Coumou D., 2015. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Scientific Reports 5: 17491. DOI 10.1038/srep17491.LehmannJ.CoumouD.2015. The influence of mid-latitude storm tracks on hot, cold, dry and wet extremes. Scientific Reports5: 17491. DOI 10.1038/srep17491.Open DOISearch in Google Scholar
Loth B., Graf H.F., Oberhuber J.M., 1993. Snow cover model for global climate simulations. Journal of Geophysical Research Atmospheres 98: 10451–10464.LothB.GrafH.F.OberhuberJ.M.1993. Snow cover model for global climate simulations. Journal of Geophysical Research Atmospheres98: 10451–10464.Search in Google Scholar
Łupikasza E., 2008. Zależność występowania rodzajów opadów od temperatury powietrza w Hornsundzie (Spitsbergen) w okresie 1978–2007. Problemy Klimatologii Polarnej 17: 87–103.ŁupikaszaE.2008. Zależność występowania rodzajów opadów od temperatury powietrza w Hornsundzie (Spitsbergen) w okresie 1978–2007. Problemy Klimatologii Polarnej17: 87–103.Search in Google Scholar
Łupikasza E.B., Ignatiuk D., Grabiec M., Cielecka-Nowak K., Laska M., Jania J., Luks B., Uszczyk A., Budzik T., 2019. The Role of Winter Rain in the Glacial System on Svalbard. Water 11: 334. DOI 10.3390/w11020334.ŁupikaszaE.B.IgnatiukD.GrabiecM.Cielecka-NowakK.LaskaM.JaniaJ.LuksB.UszczykA.BudzikT.2019. The Role of Winter Rain in the Glacial System on Svalbard. Water11: 334. DOI 10.3390/w11020334.Open DOISearch in Google Scholar
Łupikasza E., 2016. The climatology of air-mass and frontal extreme precipitation. Springer Atmospheric Sciences, Springer Cham. DOI 10.1007/978-3-319-31478-5.ŁupikaszaE.2016. The climatology of air-mass and frontal extreme precipitation. Springer Atmospheric Sciences, Springer Cham. DOI 10.1007/978-3-319-31478-5.Open DOISearch in Google Scholar
Łupikasza E., Cielecka-Nowak K., 2020. Changing probabilities of days with snow and rain in the Atlantic sector of the arctic under the current warming trend. Journal of Climate 33: 2509–2532. DOI 10.1175/JCLI-D-19-0384.1.ŁupikaszaE.Cielecka-NowakK.2020. Changing probabilities of days with snow and rain in the Atlantic sector of the arctic under the current warming trend. Journal of Climate33: 2509–2532. DOI 10.1175/JCLI-D-19-0384.1.Open DOISearch in Google Scholar
Lüthi S., Ban N., Kotlarski S., Steger C.R., Jonas T., Schär C., 2019. Projections of alpine snow-cover in a high-resolution climate simulation. Atmosphere 10: 463. DOI 10.3390/atmos10080463.LüthiS.BanN.KotlarskiS.StegerC.R.JonasT.SchärC.2019. Projections of alpine snow-cover in a high-resolution climate simulation. Atmosphere10: 463. DOI 10.3390/atmos10080463.Open DOISearch in Google Scholar
Mackay J.R., 1987. Some mechanical aspects of pingo growth and failure, Western Arctic Coast, Canada. Canadian Journal of Earth Science 24: 1108–1119. DOI 10.1139/e87-108.MackayJ.R.1987. Some mechanical aspects of pingo growth and failure, Western Arctic Coast, Canada. Canadian Journal of Earth Science24: 1108–1119. DOI 10.1139/e87-108.Open DOISearch in Google Scholar
Mann H.B., 1945. Nonparametric tests against trend. Econometrica 13: 245–259. DOI 10.2307/1907187.MannH.B.1945. Nonparametric tests against trend. Econometrica13: 245–259. DOI 10.2307/1907187.Open DOISearch in Google Scholar
Marty C., Blanchet J., 2012. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Climatic Change 111: 705–721. DOI 10.1007/s10584-011-0159-9.MartyC.BlanchetJ.2012. Long-term changes in annual maximum snow depth and snowfall in Switzerland based on extreme value statistics. Climatic Change111: 705–721. DOI 10.1007/s10584-011-0159-9.Open DOISearch in Google Scholar
Merino A., Fernández S., Hermida L., López L., Sánchez J.L., García-Ortega E., Gascón E., 2014. Snowfall in the Northwest Iberian Peninsula: Synoptic circulation patterns and their influence on snow day trends. The Scientific World Journal 48: 480275. DOI 10.1155/2014/480275.MerinoA.FernándezS.HermidaL.LópezL.SánchezJ.L.García-OrtegaE.GascónE.2014. Snowfall in the Northwest Iberian Peninsula: Synoptic circulation patterns and their influence on snow day trends. The Scientific World Journal48: 480275. DOI 10.1155/2014/480275.Open DOISearch in Google Scholar
Mora J.A.N., Martín J.R., García M.M., Pablo Davilad F., Sorianod L.R., 2016. Climatological characteristics and synoptic patterns of snowfall episodes in the central Spanish Mediterranean area. International Journal of Climatology 36: 4488–4496. DOI 10.1002/joc.4645.MoraJ.A.N.MartínJ.R.GarcíaM.M.Pablo DaviladF.SorianodL.R.2016. Climatological characteristics and synoptic patterns of snowfall episodes in the central Spanish Mediterranean area. International Journal of Climatology36: 4488–4496. DOI 10.1002/joc.4645.Open DOISearch in Google Scholar
Mote T.L., Gamble D.W., Underwood S.J., Bentley M.L., 1997. Synoptic-scale features common to heavy snowstorms in the Southeast United States. Weather and Forecasting 12: 5–23.MoteT.L.GambleD.W.UnderwoodS.J.BentleyM.L.1997. Synoptic-scale features common to heavy snowstorms in the Southeast United States. Weather and Forecasting12: 5–23.Search in Google Scholar
Nikolova N., Fasko P., Lapin M., Svec M., 2013. Changes in snowfall/precipitation-day ratio in Slovakia and their linkages with air temperature and precipitation. Contributions to Geophysics and Geodesy 43: 141–155. DOI 10.2478/congeo-2013-0009.NikolovaN.FaskoP.LapinM.SvecM.2013. Changes in snowfall/precipitation-day ratio in Slovakia and their linkages with air temperature and precipitation. Contributions to Geophysics and Geodesy43: 141–155. DOI 10.2478/congeo-2013-0009.Open DOISearch in Google Scholar
Ohba M., Suimoto S., 2020. Impacts of climate change on heavy wet snowfall in Japan. Climate Dynamics 54: 3151–3164. DOI 10.1007/s00382-020-05163-z.OhbaM.SuimotoS.2020. Impacts of climate change on heavy wet snowfall in Japan. Climate Dynamics54: 3151–3164. DOI 10.1007/s00382-020-05163-z.Open DOISearch in Google Scholar
Pedersen S.H., Liston G.E., Tamstorf M.P., Wester-gaard-Nielsen A., Schmidt N.M., 2015. Quantifying episodic snowmelt events in Arctic ecosystems. Ecosystems 18: 839–856. DOI 10.1007/s10021-015-9867-8.PedersenS.H.ListonG.E.TamstorfM.P.Wester-gaard-NielsenA.SchmidtN.M.2015. Quantifying episodic snowmelt events in Arctic ecosystems. Ecosystems18: 839–856. DOI 10.1007/s10021-015-9867-8.Open DOISearch in Google Scholar
Perevedentsev Y.P., Vasilev A.A., Sherstyukov B.G., Shantalinskii K.M., 2021. Climate change on the territory of Russia in the late 20th–early 21st centuries. Russian Meteorology and Hydrology 46: 658–666. DOI 10.3103/S1068373921100022.PerevedentsevY.P.VasilevA.A.SherstyukovB.G.ShantalinskiiK.M.2021. Climate change on the territory of Russia in the late 20th–early 21st centuries. Russian Meteorology and Hydrology46: 658–666. DOI 10.3103/S1068373921100022.Open DOISearch in Google Scholar
Popova V., 2007. Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. International Journal of Climatology 27: 1721–1733. DOI 10.1002/joc.1489.PopovaV.2007. Winter snow depth variability over northern Eurasia in relation to recent atmospheric circulation changes. International Journal of Climatology27: 1721–1733. DOI 10.1002/joc.1489.Open DOISearch in Google Scholar
Scott D., Dawson J., Jones B., 2008. Climate change vulnerability of the US Northeast winter recreation–tourism sector. Mitigation and Adaptation Strategies for Global Change 13: 577–596. DOI 10.1007/s11027-007-9136-z.ScottD.DawsonJ.JonesB.2008. Climate change vulnerability of the US Northeast winter recreation–tourism sector. Mitigation and Adaptation Strategies for Global Change13: 577–596. DOI 10.1007/s11027-007-9136-z.Open DOISearch in Google Scholar
Screen J.A., Simmonds I., 2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature 464: 1334–1337. DOI 10.1038/nature09051.ScreenJ.A.SimmondsI.2010. The central role of diminishing sea ice in recent Arctic temperature amplification. Nature464: 1334–1337. DOI 10.1038/nature09051.Open DOISearch in Google Scholar
Sen P.K., 1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association 63: 1379–1389. DOI 10.1080/01621459.1968.10480934.SenP.K.1968. Estimates of the regression coefficient based on Kendall’s tau. Journal of American Statistical Association63: 1379–1389. DOI 10.1080/01621459.1968.10480934.Open DOISearch in Google Scholar
Serquet G., Marty C., Dulex J.P., Rebetez M., 2011. Seasonal trends and temperature dependence of the snowfall/precipitation day ratio in Switzerland. Geophysical Research Letters 38: L07703. DOI 10.1029/2011GL046976.SerquetG.MartyC.DulexJ.P.RebetezM.2011. Seasonal trends and temperature dependence of the snowfall/precipitation day ratio in Switzerland. Geophysical Research Letters38: L07703. DOI 10.1029/2011GL046976.Open DOISearch in Google Scholar
Serreze M.C., Barrett A.P., Stroeve J.C., Kindig D.N., Holland M.M., 2009. The emergence of surface-based Arctic amplification. The Cryosphere 3: 11–19. DOI 10.5194/tc-3-11-2009.SerrezeM.C.BarrettA.P.StroeveJ.C.KindigD.N.HollandM.M.2009. The emergence of surface-based Arctic amplification. The Cryosphere3: 11–19. DOI 10.5194/tc-3-11-2009.Open DOISearch in Google Scholar
Serreze M.C., Barry R., 2011. Processes and impacts of Arctic amplification: A research synthesis. Global Planet Change 77: 85–96. DOI 10.1016/j.gloplacha.2011.03.004.SerrezeM.C.BarryR.2011. Processes and impacts of Arctic amplification: A research synthesis. Global Planet Change77: 85–96. DOI 10.1016/j.gloplacha.2011.03.004.Open DOISearch in Google Scholar
Sims E., Liu G., 2017. A parameterisation of the probability of snow–rain transition. Journal of Hydrometeorology 16: 1466–1477. DOI 10.1175/JHM-D-14-0211.1.SimsE.LiuG.2017. A parameterisation of the probability of snow–rain transition. Journal of Hydrometeorology16: 1466–1477. DOI 10.1175/JHM-D-14-0211.1.Open DOISearch in Google Scholar
Spreitzhofer G., 1999. Spatial, temporal and intensity characteristics of heavy snowfall events over Austria. Theoretical and Applied Climatology 62: 209–219.SpreitzhoferG.1999. Spatial, temporal and intensity characteristics of heavy snowfall events over Austria. Theoretical and Applied Climatology62: 209–219.Search in Google Scholar
Stieglitz M., Déry S.J., Romanovsky V.E., Osterkamp T.E., 2003. The role of snow cover in the warming of Arctic permafrost. Geophysical Research Letters 30: 1721. DOI 10.1029/2003GL017337.StieglitzM.DéryS.J.RomanovskyV.E.OsterkampT.E.2003. The role of snow cover in the warming of Arctic permafrost. Geophysical Research Letters30: 1721. DOI 10.1029/2003GL017337.Open DOISearch in Google Scholar
Strasser U., 2008. Snow loads in a changing climate: New risks? Natural Hazards and Earth System Sciences 8: 1–8. Online: www.nat-hazards-earth-syst-sci.net/8/1/2008/ (accessed 3 June 2024).StrasserU.2008. Snow loads in a changing climate: New risks?Natural Hazards and Earth System Sciences8: 1–8. Online: www.nat-hazards-earth-syst-sci.net/8/1/2008/ (accessed 3 June 2024).Search in Google Scholar
Suriano Z.J., Leathers D.J., 2017. Synoptically classified lake effect snowfall trends to the lee of Lakes Erie and Ontario. Climate Research 74: 1–13. DOI 10.3354/cr01480.SurianoZ.J.LeathersD.J.2017. Synoptically classified lake effect snowfall trends to the lee of Lakes Erie and Ontario. Climate Research74: 1–13. DOI 10.3354/cr01480.Open DOISearch in Google Scholar
Tamang S.K., Ebtehaj A.M., Prein A.F., Heymsfield A.J., 2020. Linking global changes of snowfall and wet-bulb temperature. Journal of Climate 33: 39–59. DOI 10.1175/JCLI-D-19-0254.1.TamangS.K.EbtehajA.M.PreinA.F.HeymsfieldA.J.2020. Linking global changes of snowfall and wet-bulb temperature. Journal of Climate33: 39–59. DOI 10.1175/JCLI-D-19-0254.1.Open DOISearch in Google Scholar
Tamang S.K., Ebtehaj A.M., 2020. Linking Global Changes of Snowfall and Wet-Bulb Temperature. Journal of Climate 33: 39–59. DOI 10.1175/JCLI-D-19-0254.1.TamangS.K.EbtehajA.M.2020. Linking Global Changes of Snowfall and Wet-Bulb Temperature. Journal of Climate33: 39–59. DOI 10.1175/JCLI-D-19-0254.1.Open DOISearch in Google Scholar
Tibaldi S., Buzzi A., 1983. Effects of orography on Mediterranean lee cyclogenesis and its relationship to European blocking. Tellus A 35: 269–286.TibaldiS.BuzziA.1983. Effects of orography on Mediterranean lee cyclogenesis and its relationship to European blocking. Tellus A35: 269–286.Search in Google Scholar
Twardosz R., Łupikasza E., Niedźwiedź T., Walanus A., 2012. Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland. Climatic Change 113: 623–638. DOI 10.1007/s10584-011-0352-x.TwardoszR.ŁupikaszaE.NiedźwiedźT.WalanusA.2012. Long-term variability of occurrence of precipitation forms in winter in Kraków, Poland. Climatic Change113: 623–638. DOI 10.1007/s10584-011-0352-x.Open DOISearch in Google Scholar
Vikhamar-Schuler D., Isaksen K., Haugenn J.E., Tømmervik H., Luks B., Schuler T.V., Bjerke J.W., 2016. Changes in winter warming events in the Nordic arctic region. Journal of Climate 29: 6223–6244. DOI 10.1175/JCLI-D-15-0763.1.Vikhamar-SchulerD.IsaksenK.HaugennJ.E.TømmervikH.LuksB.SchulerT.V.BjerkeJ.W.2016. Changes in winter warming events in the Nordic arctic region. Journal of Climate29: 6223–6244. DOI 10.1175/JCLI-D-15-0763.1.Open DOISearch in Google Scholar
Viste E., Sorteberg A., 2015. Snowfall in the Himalayas: An uncertain future from a little-known past. The Cryosphere 9: 1147–1167. DOI 10.5194/tc-9-1147-2015, 2015.VisteE.SortebergA.2015. Snowfall in the Himalayas: An uncertain future from a little-known past. The Cryosphere9: 1147–1167. DOI 10.5194/tc-9-1147-2015, 2015.Open DOISearch in Google Scholar
Wild R., O’Hare G., Wilby R., 1996. A historical record of blizzards/major snow events in the British Isles, 1880–1989. Weather 51: 81–90.WildR.O’HareG.WilbyR.1996. A historical record of blizzards/major snow events in the British Isles, 1880–1989. Weather51: 81–90.Search in Google Scholar
WMO, 2019: Manual on Codes. International Codes, Volume I.1, Annex II to the WMO Technical Regulations. Part A – Alphanumeric Codes. WMO-No. 306, Geneva, Switzerland.WMO, 2019: Manual on Codes. International Codes, Volume I.1, Annex II to the WMO Technical Regulations. Part A – Alphanumeric Codes. WMO-No. 306, Geneva, Switzerland.Search in Google Scholar
Wu R., Kirtman B.P., 2007. Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. Journal of Climate 20: 1285–1304. DOI 10.1175/JCLI4068.1.WuR.KirtmanB.P.2007. Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow. Journal of Climate20: 1285–1304. DOI 10.1175/JCLI4068.1.Open DOISearch in Google Scholar
Yang Z., Huang W., He X., Wang Y., Qiu T., Wright J.S., Wang B., 2019. Synoptic conditions and moisture sources for extreme snowfall events over East China. Journal of Geophysical Research Atmosphere 124: 601–623. DOI 10.1029/2018JD029280.YangZ.HuangW.HeX.WangY.QiuT.WrightJ.S.WangB.2019. Synoptic conditions and moisture sources for extreme snowfall events over East China. Journal of Geophysical Research Atmosphere124: 601–623. DOI 10.1029/2018JD029280.Open DOISearch in Google Scholar
Ye H., 2008. Changes in frequency of precipitation types associated with surface air temperature over northern Eurasia during 1936–90. Journal of Climate 21: 5807–5819. DOI 10.1175/2008JCLI2181.1.YeH.2008. Changes in frequency of precipitation types associated with surface air temperature over northern Eurasia during 1936–90. Journal of Climate21: 5807–5819. DOI 10.1175/2008JCLI2181.1.Open DOISearch in Google Scholar
Ye K.H., Wu R.G., 2017. Autumn snow cover variability over northern Eurasia and roles of atmospheric circulation. Advances in Atmospheric Sciences 34: 847–858. DOI 10.1007/s00376-017-6287-z.YeK.H.WuR.G.2017. Autumn snow cover variability over northern Eurasia and roles of atmospheric circulation. Advances in Atmospheric Sciences34: 847–858. DOI 10.1007/s00376-017-6287-z.Open DOISearch in Google Scholar
Zhong K., Zheng F., Xua X., Qina Ch., 2018. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China. Atmospheric Research 205: 48–59. DOI 10.1175/JHM-D-14-0211.1.ZhongK.ZhengF.XuaX.QinaCh.2018. Discriminating the precipitation phase based on different temperature thresholds in the Songhua River Basin, China. Atmospheric Research205: 48–59. DOI 10.1175/JHM-D-14-0211.1.Open DOISearch in Google Scholar