Acceso abierto

FUZZY ADAPTIVE CONTROL OF NONLINEAR TWO-MASS SYSTEM

   | 27 oct 2017

Cite

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, Fuzzy Sets and Systems, 2004, 143, 2, 295-310. 10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int. Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228. Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy control system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial Electronics (ISIE), Istambul, 2014, 1526-1531. 10.1109/ISIE.2014.6864841Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of Technology Academic Journals, 2015, 83, 2015, 31-38. Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjami i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84. Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PI Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206. 10.1109/TIE.2007.892608Open DOISearch in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy Control of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on Industrial Electronics, 2009, 57, 2, 553-564. 10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass Drive System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688. 10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models and Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195. 10.1016/S0947-3580(98)70113-XSearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybrid neural network models, Engineering Application of AI, 2007, 20, 7, 898-911. 10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on Decision and Control, 2005, 4360-4367. Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control for motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318. 10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive using Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International Conference on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711. 10.1109/EURCON.2007.4400684Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive system operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and Measurements of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, FuzzySearch in Google Scholar

Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.Search in Google Scholar

Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy controlSearch in Google Scholar

system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial ElectronicsSearch in Google Scholar

(ISIE), Istambul, 2014, 1526-1531.Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of TechnologySearch in Google Scholar

Academic Journals, 2015, 83, 2015, 31-38.Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjamiSearch in Google Scholar

i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PISearch in Google Scholar

Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608Search in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy ControlSearch in Google Scholar

of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on IndustrialSearch in Google Scholar

Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass DriveSearch in Google Scholar

System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models andSearch in Google Scholar

Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-XOpen DOISearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybridSearch in Google Scholar

neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on DecisionSearch in Google Scholar

and Control, 2005, 4360-4367.Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control forSearch in Google Scholar

motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive usingSearch in Google Scholar

Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International ConferenceSearch in Google Scholar

on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive systemSearch in Google Scholar

operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and MeasurementsSearch in Google Scholar

of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, FuzzySearch in Google Scholar

Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.Search in Google Scholar

Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy controlSearch in Google Scholar

system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial ElectronicsSearch in Google Scholar

(ISIE), Istambul, 2014, 1526-1531.Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of TechnologySearch in Google Scholar

Academic Journals, 2015, 83, 2015, 31-38.Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjamiSearch in Google Scholar

i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PISearch in Google Scholar

Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608Search in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy ControlSearch in Google Scholar

of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on IndustrialSearch in Google Scholar

Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass DriveSearch in Google Scholar

System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models andSearch in Google Scholar

Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-XOpen DOISearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybridSearch in Google Scholar

neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on DecisionSearch in Google Scholar

and Control, 2005, 4360-4367.Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control forSearch in Google Scholar

motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive usingSearch in Google Scholar

Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International ConferenceSearch in Google Scholar

on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive systemSearch in Google Scholar

operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and MeasurementsSearch in Google Scholar

of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, FuzzySearch in Google Scholar

Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.Search in Google Scholar

Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy controlSearch in Google Scholar

system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial ElectronicsSearch in Google Scholar

(ISIE), Istambul, 2014, 1526-1531.Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of TechnologySearch in Google Scholar

Academic Journals, 2015, 83, 2015, 31-38.Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjamiSearch in Google Scholar

i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PISearch in Google Scholar

Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608Search in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy ControlSearch in Google Scholar

of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on IndustrialSearch in Google Scholar

Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass DriveSearch in Google Scholar

System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models andSearch in Google Scholar

Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-XOpen DOISearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybridSearch in Google Scholar

neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on DecisionSearch in Google Scholar

and Control, 2005, 4360-4367.Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control forSearch in Google Scholar

motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive usingSearch in Google Scholar

Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International ConferenceSearch in Google Scholar

on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive systemSearch in Google Scholar

operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and MeasurementsSearch in Google Scholar

of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, FuzzySearch in Google Scholar

Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.Search in Google Scholar

Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy controlSearch in Google Scholar

system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial ElectronicsSearch in Google Scholar

(ISIE), Istambul, 2014, 1526-1531.Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of TechnologySearch in Google Scholar

Academic Journals, 2015, 83, 2015, 31-38.Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjamiSearch in Google Scholar

i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PISearch in Google Scholar

Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608Search in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy ControlSearch in Google Scholar

of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on IndustrialSearch in Google Scholar

Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass DriveSearch in Google Scholar

System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models andSearch in Google Scholar

Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-XOpen DOISearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybridSearch in Google Scholar

neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on DecisionSearch in Google Scholar

and Control, 2005, 4360-4367.Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control forSearch in Google Scholar

motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive usingSearch in Google Scholar

Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International ConferenceSearch in Google Scholar

on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive systemSearch in Google Scholar

operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and MeasurementsSearch in Google Scholar

of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, FuzzySearch in Google Scholar

Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.Search in Google Scholar

Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy controlSearch in Google Scholar

system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial ElectronicsSearch in Google Scholar

(ISIE), Istambul, 2014, 1526-1531.Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of TechnologySearch in Google Scholar

Academic Journals, 2015, 83, 2015, 31-38.Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjamiSearch in Google Scholar

i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PISearch in Google Scholar

Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608Search in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy ControlSearch in Google Scholar

of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on IndustrialSearch in Google Scholar

Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass DriveSearch in Google Scholar

System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models andSearch in Google Scholar

Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-XOpen DOISearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybridSearch in Google Scholar

neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on DecisionSearch in Google Scholar

and Control, 2005, 4360-4367.Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control forSearch in Google Scholar

motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive usingSearch in Google Scholar

Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International ConferenceSearch in Google Scholar

on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive systemSearch in Google Scholar

operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and MeasurementsSearch in Google Scholar

of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

[1] WAI R., LIN C.M., HSU C.F., Adaptive fuzzy sliding-mode control for electrical servo drive, FuzzySearch in Google Scholar

Sets and Systems, 2004, 143, 2, 295-310.10.1016/S0165-0114(03)00199-4Search in Google Scholar

[2] PILTAN F., SULAIMAN N., ALLAHDADI S., DIALAME M., ZARE A., Position Control of Robot Manipulator: Design a Novel SISO Adaptive Sliding Mode Fuzzy PD Fuzzy Sliding Mode Control, Int.Search in Google Scholar

Journal of Artificial Intelligence and Expert System, 2011, 2, 5, 208-228.Search in Google Scholar

[3] KNYCHAS S., DERUGO P., SZABAT K., Damping of the torsional vibration using adaptive fuzzy controlSearch in Google Scholar

system with different recurrences, 2014 IEEE 23rd International Symposium on Industrial ElectronicsSearch in Google Scholar

(ISIE), Istambul, 2014, 1526-1531.Search in Google Scholar

[4] DERUGO P., KACERKA J., JASTRZĘBSKI M., SZABAT K., Analiza ARN-R PID z warstwą tranzycji Petriego, w sterowaniu silnikiem liniowym z magnesami trwałymi, Poznań University of TechnologySearch in Google Scholar

Academic Journals, 2015, 83, 2015, 31-38.Search in Google Scholar

[5] DERUGO P., KACERKA J., SZABAT K., Adaptacyjny regulator neuronowo-rozmyty z rekurencjamiSearch in Google Scholar

i warstwą tranzycji Petriego w sterowaniu napędem elektrycznym, Przegląd Elektrotechniczny, 2016, 92, 4, 79-84.Search in Google Scholar

[6] SZABAT K., ORŁOWSKA-KOWALSKA T., Vibration Suppression in a Two-Mass Drive System Using PISearch in Google Scholar

Speed Controller and Additional Feedbacks - Comparative Study, IEEE Trans. on Industrial Electronics, 2007, 54, 2, 1193-1206.10.1109/TIE.2007.892608Search in Google Scholar

[7] ORŁOWSKA-KOWALSKA T., DYBKOWSKI M., SZABAT K., Adaptive Sliding-Mode Neuro-Fuzzy ControlSearch in Google Scholar

of the Two-Mass Induction Motor Drive Without Mechanical Sensors, IEEE Transactions on IndustrialSearch in Google Scholar

Electronics, 2009, 57, 2, 553-564.10.1109/TIE.2009.2036023Search in Google Scholar

[8] SERKIES P., SZABAT K., Application of the MPC to the Position Control of the Two-Mass DriveSearch in Google Scholar

System, IEEE Transactions on Industrial Electronics, 2012, 60, 9, 3679-3688.10.1109/TIE.2012.2208435Search in Google Scholar

[9] KAROLEWSKI B., Modelowanie więzów łączących elementy układu napędowego, Przegląd Elektrotechniczny, 2001, 77, 2, 39-43.Search in Google Scholar

[10] OLSSON H., ASTROM K.J., CANUDAS de WIT C., GAFVERT M., LISCHINSKY P., Friction Models andSearch in Google Scholar

Friction Compensation, European Journal of Control, 1998, 4, 3, 176-195.10.1016/S0947-3580(98)70113-XOpen DOISearch in Google Scholar

[11] CILIZ M.K., TOMIZUKA M., Friction modeling and compensation for motion control using hybridSearch in Google Scholar

neural network models, Engineering Application of AI, 2007, 20, 7, 898-911.10.1016/j.engappai.2006.12.007Search in Google Scholar

[12] BONA B., INDRI, M., Friction Compensation in Robotics: an Overview, IEEE Conference on DecisionSearch in Google Scholar

and Control, 2005, 4360-4367.Search in Google Scholar

[13] LIN F.J., FUNG R.F., WAI R.J., Comparison of sliding-mode and fuzzy neural network control forSearch in Google Scholar

motor-toggle servomechanism, IEEE Trans. Mechatronics, 1998, 3, 4, 302-318.10.1109/3516.736164Search in Google Scholar

[14] SZABAT K., KAMIŃSKI M., ORŁOWSKA-KOWALSKA T., Robust Control of an Electrical Drive usingSearch in Google Scholar

Adaptive Fuzzy Logic Control Structure with Sliding-Mode Compensator, The International ConferenceSearch in Google Scholar

on “Computer as a Tool” EUROCON, 2007, Warsaw, 1706-1711.Search in Google Scholar

[15] WRÓBEL K., Adaptive fuzzy control based on sets of the second type of the complex drive systemSearch in Google Scholar

operating at low speed, Scientific Papers of the Institute of Electrical Machines, Drives and MeasurementsSearch in Google Scholar

of the Wrocław University of Technology, Studies and Research, 2015, 71, 35, 109-117.Search in Google Scholar

eISSN:
2543-4292
ISSN:
2451-0262
Idioma:
Inglés
Calendario de la edición:
Volume Open
Temas de la revista:
Computer Sciences, Artificial Intelligence, Engineering, Electrical Engineering, Electronics