This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Avvari M.S.N., Able M., Microstructure evolution in AZ61 alloy processed by equal channel angular pressing, Adv. Mech. Eng., 2016, 8, 168781401665182, DOI: 10.1177/1687814016651820.Search in Google Scholar
Bodnárová S., Gromošová S., Hudák R., Rosocha J., Živčák J., Plšíková J., Vojtko M., Tóth T., Harvanová D., Ižariková G., Danišovič Ľ., 3D-printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study, Acta Bioeng. Biomech., 2020, 21, DOI: 10.37190/abb-01407-2019-02.Search in Google Scholar
Cao P., Li W.W., Morris A.R., Horrocks P.D., Yuan C.Q., Yang Y., Investigation of the antibiofilm capacity of peptidemodified stainless steel, R. Soc. Open Sci., 2018, 5, DOI: 10.1098/rsos.172165.Search in Google Scholar
Castellani C., Lindtner R.A., Hausbrandt P., Tschegg E., Stanzl-Tschegg S.E., Zanoni G., Beck S., Weinberg A.M., Bone-implant interface strength and osseointegration: Biodegradable magnesium alloy versus standard titanium control, Acta Biomater., 2011, 7, 432–440, DOI: 10.1016/j.actbio.2010.08.020.Search in Google Scholar
Cheng P., Zhao C., Han P., Ni J., Zhang S., Zhang X., Chai Y., Site-Dependent Osseointegration of Biodegradable High-Purity Magnesium for Orthopedic Implants in Femoral Shaft and Femoral Condyle of New Zealand Rabbits, J. Mater. Sci. Technol., 2016, 32, 883–888, DOI: 10.1016/j.jmst.2016.03.012.Search in Google Scholar
Chou D.T., Hong D., Saha P., Ferrero J., Lee B., Tan Z., Dong Z., Kumta P.N., In vitro and in vivo corrosion, cytocompatibility and mechanical properties of biodegradable Mg-Y-Ca-Zr alloys as implant materials, Acta Biomater., 2013, 9, 8518–8533, DOI: 10.1016/j.actbio.2013.06.025.Search in Google Scholar
Culmone C., Smit G., Breedveld P., Additive manufacturing of medical instruments: A state-of-the-art review, Addit Manuf., 2019, 27, 461–473, DOI: 10.1016/j.addma.2019.03.015.Search in Google Scholar
Dziadoń A., Mola R., Magnesium – trends of development of mechanical properties, Inżynieria Mater w obróbce Plast XXIV, 2013, 253–277.Search in Google Scholar
Galli S., Stocchero M., Andersson M., Karlsson J., He W., Lilin T., Wennerberg A., Jimbo R., The effect of magnesium on early osseointegration in osteoporotic bone: a histological and gene expression investigation, Osteoporos. Int., 2017, 28, 2195–2205, DOI: 10.1007/s00198-017-4004-5.Search in Google Scholar
Gieseke M., Nölke C., Kaierle S., Maier H.J., Haferkamp H., Selective Laser Melting of Magnesium Alloys for Manufacturing Individual Implants, Fraunhofer Direct Digital Manufacturing Conference, 2014, 1–6.Search in Google Scholar
Gruber K., Mackiewicz A., Stopyra W., Dziedzic R., Kurzynowski T., Development of manufacturing method of the MAP21 magnesium alloy prepared by selective laser melting (SLM), Acta Bioeng. Biomech., 2019, 21, 157–168, DOI: 10.5277/ABB-01472-2019-04.Search in Google Scholar
Gu X., Zheng Y., Cheng Y., Zhong S., Xi T., In vitro corrosion and biocompatibility of binary magnesium alloys, Biomaterials, 2009, 30, 484–498, DOI: 10.1016/j.biomaterials.2008.10.021.Search in Google Scholar
Gu X., Zhou W.R., Zheng Y.F., Cheng Y., Wei S.C., Zhong S.P., Xi T.F., Chen L.J., Corrosion fatigue behaviors of two biomedical Mg alloys – AZ91D and WE43 – in simulated body fluid, Acta Biomater., 2010, 6, 4605–4613, DOI: 10.1016/j.actbio.2010.07.026.Search in Google Scholar
Gugala N., Lemire J.A., Turner R.J., The efficacy of different anti-microbial metals at preventing the formation of, and eradicating bacterial biofilms of pathogenic indicator strains, J. Antibiot. (Tokyo), 2017, 70, 775–780, DOI: 10.1038/ja.2017.10.Search in Google Scholar
Hadzima B., Mhaede M., Pastorek F., Electrochemical characteristics of calcium-phosphatized AZ31 magnesium alloy in 0.9% NaCl solution, J. Mater Sci. Mater Med., 2014, 25, 1227–1237, DOI: 10.1007/s10856-014-5161-0.Search in Google Scholar
Jauer L., Jülich B., Voshage M., Meiners W., Selective Laser Melting of magnesium alloys, Eur. Cells Mater, 2015, 30.Search in Google Scholar
Junka A.F., Szymczyk P., Secewicz A., Pawlak A., Smutnicka D., Ziółkowski G., Bartoszewicz M., Chlebus E., The chemical digestion of Ti6Al7Nb scaffolds produced by selective laser melting reduces significantly ability of Pseudomonas aeruginosa to form biofilm, Acta Bioeng. Biomech., 2016, 18, 105–110, DOI: 10.5277/ABB-00333-2015-01.Search in Google Scholar
Kokubo T., Takadama H., How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials, 2006, 27, 2907–2915, DOI: 10.1016/j.biomaterials.2006.01.017.Search in Google Scholar
Lyczkowska E., Szymczyk P., Dybala B., Chlebus E., Chemical polishing of scaffolds made of Ti-6Al-7Nb alloy by additive manufacturing, Arch. Civ. Mech. Eng., 2014, 14, 586–594, DOI: 10.1016/j.acme.2014.03.001.Search in Google Scholar
Matena J., Petersen S., Gieseke M., Teske M., Beyerbach M., Kampmann A., Escobar H., Gellrich N.-C., Haferkamp H., Nolte I., Comparison of Selective Laser Melted Titanium and Magnesium Implants Coated with PCL, Int. J. Mol. Sci., 2015, 16, 13287–13301, DOI: 10.3390/ijms160613287.Search in Google Scholar
Ng C.C., Savalani M.M., Man H.C., Gibson I., Layer manufacturing of magnesium and its alloy structures for future applications, Virtual Phys. Prototyp, 2010, 5, 13–19, DOI: 10.1080/17452751003718629.Search in Google Scholar
Orapiriyakul W., Young P.S., Damiati L., Tsimbouri P.M., Antibacterial surface modification of titanium implants in orthopaedics, J. Tissue Eng., 2018, 9, DOI: 10.1177/2041731418789838.Search in Google Scholar
Pawlak A., Chlebus E., Szymczyk P., Ziółkowski G., Junka A.F., Selective Laser Melting of Magnesium AZ31 Alloy for Future Medical Applications, Fraunhofer Direct Digital Manufacturing Conference 2016, Fraunhofer, Berlin, 2016, 379–383.Search in Google Scholar
Pawlak A., Szymczyk P., Kurzynowski T., Chlebus E., Selective laser melting of magnesium AZ31B alloy powder, Rapid Prototyp J., 2020, 26, 249–258, DOI: 10.1108/RPJ-05-2019-0137.Search in Google Scholar
Pawlak A., Szymczyk P., Ziółkowski G., Chlebus E., Dybała B., Fabrication of microscaffolds from Ti-6Al-7Nb alloy by SLM, Rapid Prototyp J., 2015, 21, 393–401, DOI: 10.1108/RPJ-10-2013-0101.Search in Google Scholar
Pu Z., Outeiro J.C., Batista A.C., Dillon O.W., Puleo D.A., Jawahir I.S., Enhanced surface integrity of AZ31B Mg alloy by cryogenic machining towards improved functional performance of machined components, Int. J. Mach. Tools Manuf., 2012, 56, 17–27, DOI: 10.1016/j.ijmachtools.2011.12.006.Search in Google Scholar
Roy R., Tiwari M., Donelli G., Tiwari V., Strategies for combating bacterial biofilms: A focus on anti-biofilm agents and their mechanisms of action, Virulence, 2018, 9, 522–554, DOI: 10.1080/21505594.2017.1313372.Search in Google Scholar
Sanchez A.H.M., Luthringer B.J.C., Feyerabend F., Willumeit R., Mg and Mg alloys: How comparable are in vitro and in vivo corrosion rates? A review, Acta Biomater., 2015, 13, 16–31, DOI: 10.1016/j.actbio.2014.11.048.Search in Google Scholar
Shrestha A., Zhilong S., Gee N.K., Kishen A., Nanoparticulates for antibiofilm treatment and effect of aging on its antibacterial activity, J. Endod., 2010, 36, 1030–1035, DOI: 10.1016/j.joen.2010.02.008.Search in Google Scholar
Staiger M.P., Pietak A.M., Huadmai J., Dias G., Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 2006, 27, 1728–1734, DOI: 10.1016/j.biomaterials.2005.10.003.Search in Google Scholar
Szewczenko J., Kajzer W., Kajzer A., Basiaga M., Kaczmarek M., Antonowicz M., Nowińska K., Jaworska J., Jelonek K., Kasperczyk J., Biodegradable polymer coatings on Ti6Al7Nb alloy, Acta Bioeng. Biomech., 2020, 21, DOI: 10.37190/abb-01461-2019-01.Search in Google Scholar
Szymczyk P., Junka A., Ziółkowski G., Smutnicka D., Bartoszewicz M., Chlebus E., The ability of S.aureus to form biofilm on the TI-6Al-7Nb scaffolds produced by Selective Laser Melting and subjected to the different types of surface modifications, Acta Bioeng. Biomech., 2013, 15, 69–76, DOI: 10.5277/abb130109.Search in Google Scholar
Taltavull C., Torres B., Lopez A.J., Rodrigo P., Otero E., Atrens A., Rams J., Corrosion behaviour of laser surface melted magnesium alloy AZ91D, Mater Des., 2014, 57, 40–50, DOI: 10.1016/j.matdes.2013.12.069.Search in Google Scholar
Tsimbouri P.M., Fisher L., Holloway N., Sjostrom T., Nobbs A.H., Meek R.M.D., Su B., Dalby M.J., Osteogenic and bactericidal surfaces from hydrothermal titania nanowires on titanium substrates, Sci. Rep., 2016, 6, 1–12, DOI: 10.1038/srep36857.Search in Google Scholar
Witte F., Reprint of: The history of biodegradable magnesium implants: A review, Acta Biomater., 2015, 23, S28–S40, DOI: 10.1016/j.actbio.2015.07.017.Search in Google Scholar
Witte F., Hort N., Vogt C., Cohen S., Kainer K.U., Willumeit R., Feyerabend F., Degradable biomaterials based on magnesium corrosion, Curr. Opin. Solid State Mater Sci., 2008, 12, 63–72, DOI: 10.1016/j.cossms.2009.04.001.Search in Google Scholar
Zeng R., Chen J., Dietzel W., Hort N., Kainer K.U., Electrochemical behavior of magnesium alloys in simulated body fluids, Trans. Nonferrous Met. Soc. China, 2007, 17, 166–170.Search in Google Scholar
Zhang S., Zhang X., Zhao C., Li J., Song Y., Xie C., Tao H., Zhang Y., He Y., Jiang Y., Bian Y., Research on an Mg-Zn alloy as a degradable biomaterial, Acta Biomater., 2010, 6, 626–640, DOI: 10.1016/j.actbio.2009.06.028.Search in Google Scholar
Zuluaga A.F., Galvis W., Saldarriaga J.G., Agudelo M., Salazar B.E., Vesga O., Etiologic Diagnosis of chronic Osteomyelitis A Prospective Study, Arch. Intern. Med., 2006, 166, 95–100.Search in Google Scholar